

Status of XENON100

Marc Schumann *Rice University, Houston* for the XENON100 collaboration

4th Patras Workshop on Axions, WIMPs and WISPs, Hamburg 2008

Direct WIMP Detection Dark Matter Project Z= 4.97 Atoms -Dark 4.6% Energy 72% Dark Matter COUPP 23% PICASSO NASA/WMAP Phonons **CDMS** CRESST **EDELWEISS** ROSEBUD Charge Light **XENON** DRIFT **DEAP/CLEAN** LUX, ZEPLIN **GERDA** DAMA, KIMS WARP, ArDM **XMASS**

Reminder: XENON10 Results

- successful operation at LNGS 2006/2007
- 15 kg dual phase detector,
 5.4kg in fiducial volume
- Results:

Spin Independent:

PRL 100, 021303 (2008) Spin Dependent:

arXiv:0805.2939 (submitted to PRL)

The XENON program

XENON: A phased WIMP search program

Current Members:

Columbia University Rice University University of Zürich University of Coimbra LNGS UC Los Angeles *spokesperson: E. Aprile*

2007-2008: XENON100

?????

2005-2007: XENON10

Why Xenon?

- high mass number A~131:
 SI: expect high WIMP rate @ low theshold
- high atomic number Z=54, high density (~3kg/l): self shielding, compact detector
- SD: 50% odd isotopes allows further characterization after detection by testing only SI or SD
- efficient, fast scintillator (178nm)
- no long lived Xe isotopes, Kr-85 can be removed to ppt
- "easy" cryogenics @ -100°C
- scalability to larger detectors: Xe3 \rightarrow Xe10 \rightarrow Xe100 \rightarrow Xe1T
- in 2-phase TPC: good background discrimination

How does it work?

• 3d position reconstruction in TPC

Dark Matter Project

XENON100

Goal:

reduce gamma background 100 x \rightarrow material selection & screening \rightarrow detector design

Quick Facts:

- 170 kg LXe TPC (mass: 10 x Xe10)
- ~50 kg in fiducial volume
- active LXe veto
- 242 PMTs
- new cryostat design: PTR, feedthroughs outside shield
- improved Xe10 shield (Pb, Poly, Cu)
- 6 institutions, ~30 people

Backgrounds

Background reduction and background estimates are very important for any Dark Matter Experiment

 \Rightarrow see next talk (E. Tziaferi)

Cryostat, Cooling, Purification

- double wall SS cryostat (low radioactivity steel, GERDA type)
- 170 W PTR cryocooler gas gets liquified outside the shield
- continuous Xe purification (Getter)
- dedicated Kr-85 removal (July08)

PMTs & Calibration

- Hamamatsu R8520 PMTs: 1"x1", low radioactivity, 80 with high QE ~33%
- 98 in top array: arranged for good fiducial cut efficiency
- 80 in bottom array: optimized for S1 collection \rightarrow low threshold
- 64 in active veto: gain factor 3-4 compared to passive veto
- gain calibration with LEDs, measure SPE response

Electric Field & Grids

- cathode: -30kV \rightarrow drift field 1kV/cm
- anode: extraction field ~5kV
- field inside TPC was optimized in simulations for field homogeneity
 → 40 double field shaping rings
- anode stack optimized for
 - optical transparancy
 - S2 energy resolution (+4%)
- hexagonal mesh structures, pitch cathode 5mm, anode 2.5mm

XENON100 Detector

XENON100 @ LNGS

- installed underground since end of February
- filled with 140 kg xenon since mid May

Data Acquisition

Requirements:

- digitize full waveform (320µs) of 242 PMTs
- no deadtime
- high rate capability for calibration

CAEN V1724 Flash ADC: 14bit, 100MHz

- circular buffer \rightarrow no deadtime
- on board FPGA: Zero Length Encoding

M. Schumann (Rice U) - Status of XENON100

Measurements & Analysis

- Measurements to characterize detector performance are underway
- development of analysis tools

Experiment Monitor

Dedicated Slow Control system monitors:

- Temperatures
- Pressures
- Flow Rates
- Recirculation
- LXe Levels
- Vacuum
- Rn Activity
- High Voltage (anode, cathode, and PMTs)

all important
 components of
 the experiment

XENON100: Sensitivity

Dark Matter Project

XENON100: Sensitivity

Dark Matter Project

The next step: XENON1t

- 3t LXe ("1m³ detector") 1t fiducial mass
- MC studies, design studies already started
- Proposal in fall 2008
- Timeline: 2009-2012

Radiation- free Photon Detector (3" QUPID, Total 968)

OFHC Cryostat (Oxygen-Free High Conductivity Copper)

Summary

- XENON100: 170 kg dual-phase TPC
- XENON100 is underground @ LNGS
- first Dark Matter run expected fall 2008
- stay tuned...

