LIPSS results and status

O.K. Baker For the LIPSS Collaboration

20-June-08 Fourth Patras Workshop

4th Patras Workshop, DESY

LIPSS at Jefferson Lab

- experimental (data) runs in Feb-March, 2007
 - submitted results for publication: see <u>arXiv:0806.2631</u>

- spent past year . . .
 - characterizing backgrounds better
 - analyzing data with improved methods
 - upgrading FEL optics and LIPSS experiment

Jefferson Lab and the Free Electron Laser

Jefferson Lab and the Free Electron Laser

JLAB FEL spectroscopic range

4th Patras Workshop, DESY

JLAB FEL: regeneration experiment

LIPSS at Jefferson Lab

LIPSS – experiment schematic.

LIPSS detector chamber

Princeton Instruments ACTON 10:400BR-LN

LN2 cooled: <1 e/pix/hour dark noise !!! used 100 kHZ readout rate

CCD array: characterization

- used calibrated photon source to characterize LIPSS camera (efficiency, uniformity, ...)
- spent past year further characterizing backgrounds and noise
 - pixel size: 20μ x 20μ
 array size 1340 x 400
 gain: 1.0 ADU/e
 well depth: ~250 ke
 dynamic range 16 bits

backgrounds

- thermal noise
 - a < 1 count/hour/pixel at -120°C</p>
- read noise
 - 2.7 counts per read (every 2 hours)
- stray light
 - c < 1 count/hour/pixel</p>
- cosmic rays in vacuum pipe gas
 - negligible (~10⁻⁶ Torr vacuum)
- cosmic rays striking CCD array
 - easy to identify and discard
- radiation from FEL
 - negligible

. . .

Piacton 400BR-LN CCD camera

photon

- good position resolution
- no time resolution
- low dark current (cooled with LN_2)
- cosmic rays and background radiation induced events
- charge in each pixel converted to an ADU count
- **.** 1340 x 400 pixels; each 20 x 20 um

pointing error

- light rays parallel to axis are focussed onto single pixel (spot size < 10 µm)
- light rays not parallel to beam line axis can be focused onto different pixel (spherical aberration)
- controlled by keeping laser fixed at TMs
- studied this behavior during past year (with FEL and HeNe)

typical time exposure; the dark spots are due to backgrounds (cosmic rays, stray light, thermal, . . .) long (several hour) hour exposure #1354 from 3/2/07:

to remove these "anomalies", a logical mask is created...

estimate σ based on 5-95% cut; then cut on 10 x σ also mark off 1 pixel neighborhood

data preparation

- discarded all runs with CR hit within 100 pixels of signal region in any direction
- before each series of runs:
 - shutter open and closed
 - FEL lasing and not lasing
 - magnetic field on and off
 - room lights on and off
 - temp dependence of noise in camera

••••

magnetic field strength and length

data analysis . . .

Spring '07 data

- 17 hours of data taking (over a period of one week).
- laser light polarized perpendicular to magnetic field direction (scalar coupling).
- backgrounds well characterized over the past two years.
 - large number of background pixels (several million)
- laser light focussing and pointing error well characterized over the past two years.
 - focused to 3x3 pixel signal area

parameters for initial LIPSS run (2007)

- B-field:
- magnet length:
- IR FEL power
- IR FEL wavelength
- quantum efficiency
- linear polarization
- acceptance

1.77 T

1.01 m

0.18 kW

935 nm (1.33 eV)

0.45

100%

100%

experimental efficiency ~ 90%

results

Y = n P₁ P₂ ε ($\Delta\Omega/\Omega$) yield (#/s) • n = photon flux (#/s) • P₁ (P₂) = production (regeneration) probability • ε = detection efficiency • $\Delta\Omega/\Omega$ = solid angle

significance greater than or equal to five for discovery

significance of LIPSS result <u>confidence level exclusion</u> 10⁴ BFRT S=5 S=2 S=2 S=2

* now disclaimed

LIPSS at Jefferson Lab

- no evidence for scalar coupling at this level
- will resume running at Jefferson Lab in Fall 08
 - upgraded FEL
 - upgraded LIPSS equipment
 - will run in pseudoscalar mode
- developing a new experiment using microwave cavities (see P. Slocum's talk this conference)
 - □ 34 GHz source
 - resonant cavities

LIPSS collaboration

O.K. Baker*, M. Minarni¹, P. Slocum Yale University

A. Afanasev, R. Ramdon Hampton University

K. Beard[#], G. Biallas, J. Boyce, M. Shinn Jefferson Lab

*Spokesman ¹now at Riau Univ, Indonesia [#]now at Muons Inc. Batavia

acknowledgements

- FEL Division: F. Dylla, G. Neil, G. Williams, R. Walker, D. Douglas, S. Benson, K. Jordan, C. Hernandez-Garcia, J. Gubeli
- Hampton Univ: M.C. Long, K. McFarlane

funding

- Office of Naval Research
- Yale University