UNIVERSITÉ PAUL SABATIER

TOULOUSE III

BMV Project :

Final results on photon oscillations into massive particles

Laboratoire Collisions Agrégats Réactivité, Toulouse

C. Robilliard, <u>M. Fouché</u>, C. Rizzo

Laboratoire National Champs Magnétiques Pulsés, Toulouse

J. Mauchain, R. Battesti

Laboratoire pour l'Utilisation des Lasers Intenses, Palaiseau

A.-M. Sautivet, F. Amiranoff

Detecting axions : an experimental challenge

- Introduced to solve the strong CP problem
- Boson
- Neutral
- Very low mass
- Weak and strong forces : very low cross section

 \Rightarrow Hardly interact with ordinary matter

Axion = extremely difficult to detect

Axion coupling to photon

Coupling to photon :

Oscillation between two states :

- photon (polarisation // B)
- axion

Primakoff effect

Axion coupling to photon

Coupling to photon :

Oscillation between two states :

- photon (polarisation // B)
- axion

Primakoff effect

□ In a constant magnetic field B over a length L :

$$p(L) = \left(\frac{2B\omega}{Mm_a^2}\right)^2 \sin^2\left(\frac{m_a^2 L}{4\omega}\right)$$

 ω = photon energy

□ Parameters :

- m_a axion mass
- $g_{a\gamma} = 1/M$ coupling constant

Axion coupling to photon

Coupling to photon :

Oscillation between two states :

- photon (polarisation // B)
- axion

□ In a constant magnetic field B over a length L :

$$p(L) = \left(\frac{2B\omega}{Mm_a^2}\right)^2 \sin^2\left(\frac{m_a^2 L}{4\omega}\right)$$

 ω = photon energy

□ Parameters :

- m_a axion mass
- $g_{a\gamma} = 1/M$ coupling constant

Two types of experiments : Solar or cosmic origin

Axion source :

• solar origin CAST

cosmic origin ADMX

S. J. Asztalos et al., Phys. Rev. D **69**, 011101 (2004)

Detection : on earth

No axion detected

Two types of experiments : Purely terrestrial experiment

Axion source and detection : on earth

• Light shining through the wall :

No axion detected

• PVLAS (QED test) :

Two types of experiments : Purely terrestrial experiment

Axion source and detection : on earth

Outline

1) Our light shining through the wall experiment

- Setup
- Key elements : laser, B, detector
- Synchronization

2) Results

- Interpretation
- Inverse coupling constant vs axion mass
- Comparison with other experiments

3) Oscillations into other massive particles

- Paraphoton case
- Results

Conclusion & Outlooks

Outline

1) Our light shining through the wall experiment

- Setup
- Key elements : laser, B, detector
- Synchronization

2) Results

- Interpretation
- Inverse coupling constant vs axion mass
- Comparison with other experiments

3) Oscillations into other massive particles

- Paraphoton case
- Results

Conclusion & Outlooks

Principle of the experiment

Number of regenerated photon :

$$N_{RP} = \eta \times N_i \left(\frac{BL}{2M}\right)^4 \frac{\sin^4(y)}{y^4}$$

with $y = \frac{m_a^2 L}{\omega}$

- N_i Number of incident photons
- L magnet length
- η detection efficiency

The three key elements

Number of regenerated photons :

$$N_{RP} = \eta \times N_i \left(\frac{BL}{2M}\right)^4 \frac{\sin^4(y)}{y^4} \qquad \text{with } y = \frac{m_a^2 L}{\omega}$$

 N_{RP} as high as possible

 \Rightarrow

- **1.** Laser : High N_i
 - high BxL

3. Photon detector :

2. Coils :

high detection efficiency η

1. Nano 2000 Laser Chain (LULI)

- 1 to 1.5 kJ / pulse
- λ = 1053 nm
- Pulse duration = adjusted between 3 to 5 ns
- 5 to 6 pulses / day

 \Rightarrow N_i = 5 to 8×10²¹ / pulse

2. Coils Development (LNCMP)

X coil geometry \Rightarrow high transverse magnetic field

- Length = 45 cm
- Aperture = 12 mm

Coils originally developed for the BMV experiment by S. Batut & O. Portugall.

2. Coils test (LNCMP)

 $B_0 > 12$ T over 36 cm

$$\Rightarrow$$
 B.L = 4,3 T.m

- Time duration : 5 ms
- B₀ reached within 1.75 ms
- B_0 (+/- 0.3 %) during 150 μ s

2. Coils cryostats (LNCMP)

Immersion in liquid nitrogen

3. Detection

□ Single photon Detector :

Commercially available from Princeton Lightwave Instruments

- 80x80 mm² APD optimizes at 1064 nm
- Geiger mode with detection gate = 5 ns
- Coupling through a fibre

Gibre link :

- 30 m long \Rightarrow avoid electronic noise due to XCoils

3. Detector Test (LCAR)

Goals :

- High detection efficiency
- low dark count rate

Adjustments :

- Temperature
- Bias voltage
- Discriminator threshold

Tests performed with cw Nd:YAG monomode laser.

Dark count rate = 2.5×10^{-4} / Pulse $\eta = 0.48$

Performance

Expected results :

• After 5 pulses : test PVLAS results (2σ confidence level)

□ Characteristics of our experiment :

- •Pulsed experiment
- \Rightarrow background not limiting

•Limited number of pulses / year

To avoid air ionization

Focalisation Lens : f = 20 m

Coils and their cryostats

Generator originally developed for experiments at ESRF by P. Frings.

For the Pulsed magnetic field :

Transportable generator

Synchronization "Laser-XCoils"

B₀ (+/- 0.3 %) during 150 μs

Magnetic pulse trigger : from the laser chain

 \Rightarrow Ensure laser pulse happens during these 150 μs

Synchronization "Laser-Detector"

Laser pulse : 3 to 5 nsDetector gate : $5 \text{ ns} \Rightarrow \text{Trigger} = \text{same fast signal as}$ laser with delay lines

Jitter = 150 ps

Final tests

Optical shielding : no count

■ Electromagnetic noise : count ⇒ Detector in shielding bay : no count

Alignment procedure : with the unchopped pilot beam

aligned with the high energy pulse

How can we be sure that the high energy pulse follows exactly the same optical path ?

- Image recorded for each pulse.
- Estimation of losses

Ready to take data

Ready : end of May 2007

□ Strength of our experiment :

- high laser energy + high B×L
- laser + B + detector pulsed
 - \Rightarrow Small integration time to test PVLAS claims
 - \Rightarrow Background of detection not limiting
 - Efficient experiment :
 - to test PVLAS results
 - 2 to 2500 regenerated photons / pulse
 - not to detect standard axion
 - 10⁻²¹ to 10⁻³⁰ regenerated photons / pulse

Outline

1) Our light shining through the wall experiment

- Setup
- Key elements : laser, B, detector
- Synchronization
- 2) Results
 - Interpretation
 - Inverse coupling constant vs axion mass
 - Comparison with other experiments

- 3) Oscillations into other massive particles
 - Paraphoton case
 - Results

Conclusion & Outlooks

Measurements

1 week in July 2007

PVLAS results excluded : C. Robilliard et al., Phys. Rev. Lett. 99, 190403 (2007)

1 week in September 2007

2 weeks in January 2008

Number of pulses :	82
Total incident energy :	110 kJ
Number of incident photon :	5.9 × 10 ²³

Result :

No regenerated photon detected

Limits ?

No regenerated photon detected

- □ If PVLAS limits confirmed :
 - 2 to 2500 regenerated photons / pulse

Our limits ? :

- For a : detection efficiency η
 - Confidence level (Ex. : $CL = 0.95 \equiv 2\sigma$)
 - \rightarrow Number *n* of missed regenerated photon
- Numerical integration of $p(L)^2 \times N_i \le n$

with
$$p(L) = \left| \int_{0}^{L} dz' \frac{B(z')}{2M} \times \exp\left(-i\frac{m_{a}^{2}z'}{2\omega}\right) \right|^{2}$$

 \Rightarrow Limits in the (m_a , M) plane

Our present limits

BFRT 3σ

Our present limits

Our present limits

Compared to other experiments

Outline

1) Our light shining through the wall experiment

- Setup
- Key elements : laser, B, detector
- Synchronization

2) Results

- Interpretation
- Inverse coupling constant vs axion mass
- Comparison with other experiments

- 3) Oscillations into other massive particles
 - Paraphoton case
 - Results

Conclusion & Outlooks

Paraphoton ?

Deviation from blackbody curve in the cosmic background radiation

Photon oscillations into massive particle

Anomaly in the cosmic background radiation not confirmed :

But paraphoton existence not excluded

How to detect it ?

□ Photon-paraphoton oscillation :

- Possible without any external field
- Independent on photon polarization

Can be detect with a light shining through the wall experiment

Conversion probability :

$$p(L) = 4\chi^2 \sin^2\left(\frac{\mu^2 L}{4\omega}\right)$$

Paraphoton results

Paraphoton results

Conclusion

□ PVLAS results not confirmed \Rightarrow Axion is still running

□ Strength of this experiment

 \Rightarrow Useful to test numerous theories beyond standard model in the low energy window :

- Paraphoton
- Chameleon

- ...

Axion search :

To test standard axion with this setup : far more difficult \Rightarrow Different design

The BMV experiment in Toulouse

Goal :

measurement of the QED magnetic birefringence of vacuum

□ Improvement on axions :

One or two orders of magnitude compared to purely terrestrial axion searches

Collaborators

Cécile Robilliard

Carlo Rizzo

Rémy Battesti Julien Mauchain LNCMP

LULI

Anne-Marie Sautivet

François Amiranoff

General set-up (LCAR)

Detection checking

- Laser trigger

- Photon TTL

High energy optical path :

- image recorded for each pulse
- Synchronization :
 - 2 oscilloscopes
- Laser trigger
- Magnetic field
- \Rightarrow magnetic field laser synchronization checking
- \Rightarrow B₀ measurement

- \Rightarrow detector laser synchronization checking
- \Rightarrow checking of the APD polarisation