

(Long) Wide Aperture (High-Field) Superconducting Magnets

4th Patras Workshop, DESY, 20.06.2008

S. Russenschuck CERN, MEI-FP

 $S = R(1 - \cos{\frac{\alpha}{2}}) \approx \frac{R\alpha^2}{8} = \frac{QBL^2}{8p}$

$\{p\}_{\text{GeV/C}} \approx 0.3 \{Q\}_e \{R\}_m \{B_0\}_T$

CAST Experiment

Conversion efficiency Q $(BL)^2$ Signal rate Q $(BL)^2A$

Magnetic length 9.26 m, Flux density 9 T, Aperture 50 mm, Coldbore 43-46 mm

- ➔ Field quality
 - Filament magnetization
 - Saturation
- Ramp induced field errors
- ➔ Beam losses
- No training
- Series connection
 - Cold diodes
 - No energy extraction
- → Sagitta
- Stationary
- Prototyping

- → → -
- → -
- → -
- → -
- Training is possible
- Single magnet
 - Power supply
 - Energy extraction possible
- → Straight
- ➔ Moving
- No prototype work possible (except short model)

H Magnet (Iron Dominated)

 $N \cdot I = 24000 \text{ A}$ $B_1 = 0.3 \text{ T}$ $B_s = 0.065 \text{ T}$ Fill.fac. 0.98

Operational field	8.3 T
Coil aperture	56 mm
Magnetic length	14.3 m
Operating current	11800 A
Stored energy	6.9 MJ

The LHC Magnet Zoo

Nikolai SCHWERG, CERN AT/MEL, 1211 Geneva 23

Magnet Extremities

Winding and Curing Tooling

Collaring Tooling

Collaring (an Alternative for Magnets > 16 m)

Nikolai SCHWERG, CERN AT/MEL, 1211 Geneva 23

Rutherford Cable, Strand, NbTi Filament

The Field of a Line Current

$$B_n(r_0) = -\frac{\mu_0 I}{2\pi} \frac{r_0^{n-1}}{r_i^n} \cos n\Theta$$

$$A_n(r_0) = \frac{\mu_0 I}{2\pi} \frac{r_0^{n-1}}{r_i^n} \sin n\Theta$$

$$A_{z}(r_{0},\varphi) = -\frac{\mu_{0}I}{2\pi} \ln\left(\frac{r_{i}}{R_{\text{ref}}}\right) + \frac{\mu_{0}I}{2\pi} \sum_{n=1}^{\infty} \frac{1}{n} (\frac{r_{0}}{r_{i}})^{n} \cos\left(n(\varphi - \Theta)\right), \qquad r_{0} < r_{i}$$

x

$$\begin{split} B_r(r_0,\varphi) &= \frac{1}{r_0} \frac{\partial A_z}{\partial \varphi} = -\frac{\mu_0 I}{2\pi} \sum_{n=1}^{\infty} \left(\frac{r_0^{n-1}}{r_i^n}\right) \sin\left(n(\varphi - \Theta)\right) \\ &= -\frac{\mu_0 I}{2\pi} \sum_{n=1}^{\infty} \left(\frac{r_0^{n-1}}{r_i^n}\right) \left(\sin n\varphi \cos n\Theta - \cos n\varphi \sin n\Theta\right), \quad r_0 < r_i. \end{split}$$

Ideal Current Distributions

Coil Block Approximation

Dipole

Quadrupole

Combined Function Magnets

A Magnet based on LHC Technology

Flux density: 9 T Length: 16 m Aperture: 140 mm

Critical Surface of NbTi

11

.

1111

111111111

$$B = \frac{\mu_0}{2} J_{\rm E}(r_{\rm e} - r_{\rm a}) = \frac{\mu_0}{2} \lambda_{\rm tot} J_{\rm c} \left(r_{\rm e} - r_{\rm a} \right) = \frac{\mu_0}{2} \lambda_{\rm tot} d \left(B_{\rm c2} - B \right) \left(r_{\rm e} - r_{\rm a} \right)$$

Peter Lee's Plot of SC Critical Current Density

Nikolai SCHWERG, CERN AT/MEL, 1211 Geneva 23

Nb₃Sn Rutherford Cable (Ref: P. Ferracin, Wamsdo Workshop 2008)

Power in Tube (PIT), Modified Jelly Roll (MJR) and Rod Restack Process (RRP) developed and studied at LBL.

- ➔ Ic and RRR degradation
- Low non-uniform interstrand contact resistance
- Bridle material
- High temperature insulation because of wind and react
- Epoxy impregnated coils

See also A. Godeke et al. and T. Collings (WAMSDO'2008).

Stress management Two materials Two power supplies

With interest and money 8 m, 13 T possible by 2016

Reached 13.3 T after 18 Training Quenches

GORAIDERS

Double Helix Coil (HTC Insert for High Field Dipole)

Alternative Layouts for Quadrupoles Nb₃Sn

Goal:

Aperture: 90 -120 mm Gradient: 200 - 240 T/m

→ Nb-Ti

- L > 15 m
- B > 10 T
- A > 140 mm
- < 2013 (resources)</p>
- < 2 MCHF</p>

→ Nb₃Sn

- L > 8 m
- B > 14 T
- A > 140 mm
- Cheap
- < 2016

- → NED (Next European Dipole)
 - Nb₃Sn Conductor development with Power in Tube and Internal Tin diffusion technology
- → US-LARP (LHC Accelerator Research Program, BNL, FNAL, LBNL, SLAC)
 - LHC-IR Quadrupoles for the next generation
 - LQ: 4 m, 90 mm, 220 T/m Quad in 2009
 - HQ: 1 m, 120 mm, 220 T/m Qaud in 2012
 - LR: 4 m, 12 T, Ractrack, no aperture
 - HD2: 1 m, 36 mm, 12 T (existing)
- → EUCARD CERN HFM (Coordinator G. de Rijk)
 - 1.5 m, 100 mm, 13 T Dipole for FRESCA, 2012
 - 4 m, 100 mm, 12 T Dipole, 2013
 - 4 m, 120 mm, 100 T/m Quad, 2013