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Axi on and axion-|l1ke particles

m In general, axion-like particle (ALP) is a pseudoscalar

m?

1 a
Lap=—(8,a)> — —2a%® + —e**F, F
ALP 2( Iz ) 9 +4M prdAp

m ALP couples to electromagnetic field via

1

Za(w) eMVAPFE, Fy, = a(x)E - H

m One can search for ALPs in parallel electric and magnetic fields

m Other theories with e#***F},, F5,?
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Term FF

m F'F —term is total derivative

~

1
FF = 5e“"*PFWlap = 9, K"

m or for non-Abelian fields

~

FF = 1 MUAP Ty (B F
—56 I‘( Qv AP)

m (Chern-Simons) current K* is not gauge invariant
m Term [ d'x FF # 0is topological (does not depend on the metric)
m Related to quantum anomalies

m ...and to “index theorem”
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Anonal | es

m Maxwell equations need conserved current:
o F* = 3¥ = 0,0, F*" =0,3V =0

m If matter is quantum, the expectation value (9,,7") =0
m Normally it is guaranteed by gauge symmetry.

m Loops of chiral fermions x violate symmetries of classical theory:

X A’(L)Lut
It I®
X

AL AL kquut £ 0
5 For a gauge symmetry this

e . :

; v -
0, (j") = 167726“ P, Fx, leads to non-unitarity.
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Fermions in the Standard Model are chiral

How such a theory can be
consistent?

Several chiral fermions can help make theory
well defined
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Fermons I n the Standard Mbodel

m Fermions of the Standard Model are chiral with respect to the
SU (2) x Uy (1) group.

L = (VL) €R, VR(?) Q — (uL> UR, dR

~
leptons quarks

m How to write masses for such fermions?

m Mass term mixes left and right-moving fermionic modes:

Lmass = My = M (Yryr + Yrir)

m In chiral theories ey, # er. Mass term Is not gauge invariant
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Masses of fermons 1n the Standard Model

m Chiral fermions can obtain mass only through Yukawa interaction
with the charged scalar (Higgs field): H = H, + 1H>

Lyykawa = f@z(Hl + 7:")’5H2)'¢ — (fv)("sze_w@bR + &Rew"pL)
S

mass of the fermion, v = |H|, 8 — phase of the complex scalar
field.

m Yukawa terms with the SU (2) Higgs double H (H® = €**Hy)

Lyvukawa = feEHeR + quI:IuR + fdQHdR + fvEI:IVR(?)

m Gauge Iinvariance of Yukawa terms restricts the choice of
hypercharges Y down to 2 arbitrary numbers: Yz, and Yg
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Anonmal y cancellation in the Standard NModel

m Triangular anomalies Uy (1)® and Uy (1)SU (2)? are proportional
to (YL -+ 3YQ)

m Electroweak symmetry breaking leaves unbroken the electromagnetic
group: Q = T3 + 1Y

m Anomaly-free condition means (Qr + 3Qq) = (Qe + Qp) =0

Standard Model fermions have non-anomalous hypercharges

(3

Matter is neutral

m Current experimental bounds

(Qe + Qp)

e

< 10—21
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Anonmal y cancellation in SM

m Yukawa constants in the Standard Model are very different (f. ~
107° ;)

m It may happen that one group of chiral fermions is much heavier
than the other (m,, << m,).

m Example: mypottom ~ 5 GeV K my,, ~ 174 GeV. However,
SM without t-quark is anomalous — gauge invariance is broken at
guantum level and the theory would lose unitarity.

m Usual logic of effective field theories tells us that contributions Appelquist,
from heavy particles are suppressed as powers of (E/M)™ Corazzoners
(“Decoupling theorem”)

m How does anomaly cancellation works at energies m,, < F <
My ?
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D Hoker-Farhi terns

m Contributions from heavy particles are suppressed as powers of Appelquist,
gnl(E/M)nz Corazzone'75

m Chiral fermions couple to the scalar field with the Yukawa coupling

constant f ~ 2. Mass contribution can cancel no matter how high

prat
the mass is.

m Heavy chiral fermions can produce quantum corrections to the bp'Hoker-
current, not suppressed by their mass Farhi'84

)
H*D,H
| H |

. vA
I ~ €77P Fxp

H — Higgs field . This current survives even as |H| — oo
m D’Hoker-Farhi current is not conserved:

7 HUAP
Oudpe ~ € FuvFxp
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(bservational signatures of anonalies

m Anomaly analysis gives information about the arbitrarily high
energy physics

m For example, the discovery of b-quark strongly hinted at existence
of the t-quark (no matter how heavy it would be)!

m Can the anomalous currents a la D’Hoker-Farhi, produced by some
heavy particles, be observed at low energies?

Anomalies can probe into the high-energy physics
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Exanpl e:  hi gher-di nensi onal current

m Theoryin4+1: S = [ diz dz ¥ +(z) (il])+ )\<I>(z)>\Ilf(w) .

Heavy Light modes
fermion . .
Extra dimensions
Heavy
fermions

m Fermions interact with the “domain wall”: ®(z) = ®(tanh(Mj5z)
My > TeV

m Fermions in the bulk (z # 0) are vector-like and massive Mg =
AP.

m Zero mode in the kink background are chiral Rubakov,
Shaposhnikov
(1983)

W(w,2) = p(@) exp(£A [ @()dz) [ ep(@) = 9@

0
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Anonmal y | nfl ow

m Modes of only one chirality on the domain wall will produce gauge
anomaly
What restores consistency of the theory?

m Massive bulk modes produce a Chern-Simons term in the effective
action

K
Scs = " / d*rdz €’ A F, .F.

m This term leads to the current, perpendicular to the electric field:

0Scs K
J& — — _eabcdeF F
CS 5Aa bet' de
m If electric field is pointing along the brane, the Chern-Simons raddeey,
current will flow towards the brane: — anomaly inflow current ggﬁ;ShV'“’M

m If the extra dimension is compact (as in original Kaluza-Klein) this ™aveys>
Chern-Simons becomes an axion term : O F F
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Anonmal y | nfl ow

|nf|oW Brane with zero modes
curren

Extra di menS| ons

I nfl ow
current

m Chern-Simons current is conserved in the bulk, divergent on the
domain wall

m Its divergence cancels the divergence of the zero mode current

OaJls 4 O0u(gt,) =0
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Mani f est ati ons of Anomaly | nfl ow?

m Experimentally electric neutrality of matter is confirmed to a very

high precision Q‘gfp < 10~21

m What if still 2792 o« 0

m What will the 4-dimensional observer detect?

— Flux of particles from higher dimensions?
Wrong! Their masses are too high

— Five-dimensional transversal photon:
kA, +k°As =0 but krA,#07?
Wrong! — photon cannot propagate in the bulk

m The inflow current is a vacuum current — not carried by real
particles. It is caused by a redistribution of the charges in the Dirac
sea of the full theory, leads to an appearance of an electric charge
on the brane.
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Experi nental detection of extra di nensions?

m Plane wave propagating in the strong magnetic field H, ~ const

and ~y < 1. For the wave with parallel to H polarization Boyarsky,
OR,
1 o H2ﬁ2 Shap.oshnikov
3, (A(z)azAw) L OA, = M08 A 1 O(ke) 205
A(z) M52A2(z) ) ggggrsky, O.R

CS term, non-perturbative in k!

m Massive wave equation A, (x) — Az(x) =0

m Mass m?,; ~ aeuko| H| depends only on 4-dim quantities. It is
not suppressed by the scale of 5th dimension M5

m Massless wave equation for perpendicular component

mm,g ~3x10HeVfork ~ 1072

m This leads to the ellipticity of the linearly polarized light
A¢ — m?yHL ~ KJOO{EMIEIIL

2w 2w
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Ellipticity in anonal ous el ectrodynam cs

m Ellipticity also appears in theories where photon interacts with
ALPs, millicharged particles, etc. or due to the QED corrections
to the electrodynamics Lagrangian

m Signatures of anomalous electrodynamics differ from these
examples

m Unlike theories with ALP, here there is no dichroism (rotation of
polarization plane) in this theory, as there are no new light degrees
of freedom . There is also no “light shining through the wall”

m Ellipticity in our case is proportional to the |ﬁ| (unlike QED or ALP
cases, where ellipticity ~ H?). This is a signature of non-local
(higher-dimensional) physics
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Static solution in magnetic field

Static solution in strong magnetic field H = const and o < 1 to one

equation for the electrostatic potential ®(x, z) = ¢(x)x(2): Boyarsky,
OR,
— a2 K,Z ﬁz Shaposhnlkov
A(Z)az (A(z)az(I)) + V2@ = ]\;'\2" Aoz( )<I> 4 e5p(:13)5(z) +O(Kg) PRD 2005

source charge

CS term, non-perturbative in K

Effective Poisson equation:

62¢(w)_m'2yH¢(w):aEMp(w)
Electric field gets screened as if
photon had become massive

Mass m? ;=oeyrol H| depends
only on 4-dim quantities — fine-
structure  constant oagy, and
magnetic field H as measured
on the brane.
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Anomal i es and extra U(1)

m Many extensions of the SM predict theories with extra U (1) fields

m SM fermions are chiral. Generically, some of these new U (1) fields
will have anomalous couplings

m Leads to mixed Chern-
Simons term;

v

m The only two relevant
operators (together with
Kinetic mixing)
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M xed anomal i es

mlerm Lygcs = me““"PA“X,,FAp IS an exhibition of mixed
anomalies — non-conservation of a gauge current for field X in
the background of field A:

Djx = FaFa; dja = FaFx

m Even if the gauge group U (1) 4 is vector-like (e.g. electromagnetic
group U (1)), anomalies U (1)4 U (1) x can still be present!

m Dimension 4 operator, not suppressed at low energies, although

can be generated by arbitrarily heavy (anomalously charged)
fermions

Oleg Ruchayskiy Anomalies ... 19 of



M xed anonalies i1 nvol ving photons

m Possiblility : field A — photon, field X — new massive vector field.

m Longitudinal component behaves as derivatively coupled scalar

(“Goldstone boson equivalence theorem”): X, = ]\84—2(

m Chern-Simons term is equivalent to the ALP with the mass M x and
coupling
K ~
LCS — —OFF
M x

m Can be tested in any ALP experiments (birefringence, dichroism,
shining light through the wall)

m If there Is an additional light chiral fermion v for E > m,, effective
Lagrangian becomes non-local

m Now X,, couples to the conserved current Antoniadis,
Boyarsky,
oL O O.R., 2008
Je = = RKANFA+K—FsANF
X~ 5x, A Stanta
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M xed anonalies wth el ectroweak group

m In the Standard Model photon is a part of electroweak group
m Therefore, mixed anomaly is

ECS = FLE“VAPY”XU (FY)}\p

m Hyperfield Y,, = cos Owy, +sin Ow Z,,. Any mixed anomaly leads
to the massive photon?!

m Can one write terms ZXFz or ZXF, in the U(1)y x SU(2)
Invariant way?

m Yes! D’'Hoker-Farhi type terms:

H'DH HFwDHY

K X F K
1 H? Yy + K2 H?
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Testing anonmalies at LHC

m New fermions may be too heavy for LHC (M > 14 TeV)

m New vector bosons may be “light enough” (M x ~ 1 TeV) for LHC
energies

m New X-boson may not interact with the SM fermions

m If new vector boson X does not couple to the SM fields — no chance
to see it?!

m Triangular diagrams with heavy fields may lead to anomalous
couplings of X boson with with vector bosons W=, Z:

ke X, 7,002y, KeMIPX W IONW S

m Its mixed anomaly with the SM fields may give interesting
observable effects.
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LHC si gnat ures

q oM
[
[ W X
[
l .
q jet ut

m Fork ~ 1, mass Mx ~ 1 TeV and arbitrarily heavy new fields
these theories are testable at LHC
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Concl usi on

m Theories with non-trivial anomaly cancellation are similar to ALPs

m Some of anomaly motivated models do not introduce new light
particles, but still predict effects in strong magnetic field

m They may behave differently at higher energies, evading
astrophysical bounds

m Experiments (such as PVLAS-II, ALPS, OSQAR, ...) can also
probe for the signatures of these theories (and e.g. discover extra
dimensions !)

m There is an alternative approach to probe these theories —
static experiments measuring modifications of Coulomb law in the
magnetic field

m Anomalies open a possibility to see (otherwise hidden) new vector
bosons at LHC
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Thank you for your attention!

The End
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Anomal ous Ext ensi ons of SM

m Choice of hypercharges in SM is controlled by Yukawa interaction.

m This fixes hypercharge assignments up to two constants: x; In
lepton sector and «, in quark sector.

er eRr VL QL UR dr VR
—14+ Kk | 24Kk | 14K |t+K | 5+Ke| =24+ Kq | Ki

m These constants are usually chosen to be zero to ensure that SM
IS anomaly free:

, Tr[Y 3] Y Tr(YL]
BM]I{:- = WGMV)\PF{’L FYp —|— WGN p TrSU(2) G“VG)\p
where Tr[Y?] = 6(x; + 3k,) and Tr[Y,] = —2(k; + 3ky)

m Experimentally k; + 3k, = <=2 < 10~%

e

m This number is small but may be non-zero if SMis a sector a bigger
theory. For example, a theory with extra dimensions

Oleg Ruchayskiy Anomalies ... 26 of



Vector-1li1 ke El ectrodynam cs

m Arbitrary choice of parameters k;,k, leads to anomaly of
hypercharge current

m However, for any choice of hypercharges, electrodynamics remains
vector-like and anomaly-free

m If SM is expanded by some additional 4-dim fields , it may happen
that the electrodynamics will also become chiral

m If the theory contains additional U(1) 4-dim fields , there can mixed
anomaly . These anomalies of SM can be canceled by inflow from
extra dimensions

m What are the consequences of the presence of inflow currents from
the point of view of the low energy physics on a brane?
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Anonal ous El ectrodynam cs

Consider again our simplest example of anomalous electrodynamics
on a domain wall in 4+1 dimensions (z — coordinate of 5th dim )

1 1 )
S = —F/A(Z)F/\*F—I—Z/K,(z)A/\F/\F—I—/d T Lonatter
65 J A\ _J/ N _J/

A&

5-dim kinetic term Anomaly inflow interaction Anomalous theory:

Oda 2000:;

) ) . . Dubovsky et
Factor A(z) = exp(—2M/|z|) is responsible for localization of the ai. 2000:

gauge fields on a brane Shaposhnikov
Tinyakov 2001

Without CS this action would describe a 4-dim theory for E < M

Normalizable zero mode of gauge fields: 0.F,, =0, F,.,=0
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Equati ons of notion

Set of non-linear 5-dimensional Maxwell-like equations:

8 (A(2)FH?) = e2 (Tt + jt,) a,b=0,...,4
A(2)0,F** = elJZ, p=0,...,3.

JE = 3n(z)e“”>‘szvF>\p

3
JZ = Zn(z)e“"}‘pFquAp
Inflow current J.s cancels anomaly on the brane:
8#‘]53 + 82‘]?3 + 8.‘1’ng —
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Li ght propagation in magnetic field

Plane wave propagating in the strong magnetic field H, ~ const and

ro < 1. For the wave with parallel to H polarization Boyarsky, O.R
2007
A
8, (A BzAm) A, = EM 40
A(n) 2\ AR)0A) +04e = 4 s a iy Ao HOU0)

CS term, non-perturbative in k!

* Massive wave equation A, (x) — Az(x) =0

* Mass m?YH ~ aEMK,O|ﬁ| depends only on 4-dim quantities. It is not
suppressed by the scale of 5th dimension M

* Massless wave equation for perpendicular to the magnetic field
component JA,(x) = 0

* This leads to the ellipticity (blrefrlngence) of the linearly polarized

light Agp = T, soosllp

2w
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Anomalies 1n SM on D branes

m Appearance of additional anomalous U(1) groups IS a generic Ibanez,

feature in D-brane constructions of SM Rabadan,
Uranga’98
m Anomalous parameter can have arbitrary values mtos?éadis,
Rizos’'02
m Effects, similar to those, appearing in SM can be induced via
anomalous ~~~’ coupling . Antoniadis,
Boyarsky, O.R
In progress

m This may produce the low-energy string theory signature not
suppressed by string scale M ,?!
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Concl usi on

m In theories with anomaly inflow the electric charge, placed in a
magnetic field, gets screened. This low-energy effect can serve as
a signature of extra dimensions.

m Modern experimental data shows that our world is non-anomalous
with a very high precision. However, with these restrictions in mind
the effect can be pronounced enough to be detected.

m Any higher-dimensional theory should either present a mechanism
ensuring that the brane world is non-anomalous or explain a fine-
tuning of the hypercharges.

m Anomalous U(1) couplings generically appear in string vacua.
Possible experimental tests of string theory  ?
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Five coupled non-linear equations reduce for H =~ const and ko < 1
to one equation for the electrostatic potential ®(x, z) = ¢(x)x(2):

B 2 2I:’I2
8, (A(z)ach)+A(z)v2q> = S0 5 4 e2q(x)d(2) +O (ko)
M5A(z) ~ \source\(ghargej

~
CS current

non-perturbative in - k!

x(z) = exp <—M62M5'z'> V2p(x) — m? (@) = aeng()

m,zyH — aEM&O|ﬁ|

IGo back.. .|
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A model of localization of both fermions and gauge fields.

S = —5 d5wA(z)Fjb+/ &Pz ;@f(x)(izpf+mf(z))qu(x).

€s5

There are two fermions ¥, o, interacting with the gauge field with the
different charges: Py = d+2—§ A, e, # es. The fermionic mass

terms mq(z) = —m3s(z) have a “kink-like” structure in the direction
z: my(z — Too) — Ltmy.
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The only way to make the electro-dynamics anomalous is to take left
and right moving fermions with different electric charges. Thus one
can only introduce a mass term via the Higgs mechanism with an
electrically charged Higgs field:

A _
So = [ @ ||Dutf’ — mi(2)|0f — JI9l' + FEi20 + e

where D, ¢ = i0,¢ + (£ — =E) A, ¢ and the Higgs mass mfb(z) IS

e

negative at z = 0 and tends to the positive constant in the bulk, as
|z| — oo.
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The usual logic behind effective field theories : integration of
massive fields only leads to renormalization of charges and fields,
while all additional interaction suppressed by some positive power of
E/M.[“Decoupling theorem” Appelquist,Corazzone’75]

Question: if the mass scale of extra dimensions is much bigger than
our present energies — can one still expect to see any low
energy signatures?

Yes! The “decoupling theorem” does not always hold. The
most famous counterexample: theories, with Chern-Simons-like
Interactions.Redlich’s3]
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m In 2+1 dimensions:

2

log det(iv"8,, + M + ey*A,,) = &e“'/)‘Aua,,A)\ T...

m Chern-Simons term survives even as M — oo!

m True in any odd space-time dimensions.

s \WWhat about 3+1 dimensions?
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. TI‘[YS] vV A Tr[YL] v
U(]_)3 . 8“3#, = WEIJJVAPF# FYP_I_WEM AP TrSU(z) G[,LVG)\p
Tr|Y;
U(1l) x SU(2)? : D¥j% = SET;]G“”APGz,,FAp
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m New particles (“KK towers™) appear. SM particles disappear into
bulk. High-energy signatures: only at energies above the mass

gap.

m Certain theories lead to a modification of Newtons’s law at sub-mm
scales — low-energy signature [Arkani-Hamed,Dimopoulos,Dvali'98]

m Theories with anomaly inflow: special type of brane-bulk
Interaction, not suppressed by a mass gap. Low-energy
signatures? [This talk]
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m Furry theorem in QED: any diagram
with odd number of external photon
legs is zero (CP-symmetry).

m QED corrections to Maxwell theory
£=—1F2, + e (EH)? +

m The Euler-Heisenberg Lagrangian :

gives ellipticity but does not lead to A " 4
the photon mass. Static (capacitor) '
experiment would give no results -

v H

m Once w9y # 0 there is no Furry 5

theorem as er # er. Anomalous P
triangular diagram exists and leads to H )
a pole in the photon propagator with A _
m?YH ~ Kooy | H | —
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There Is also another experimental setup,
which can observe anomaly inflow and
distinguish 5-dimensional theory from its
4-dimensional counterparts
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In SM there can be only v+ Z anomalies. [The analysis gefs messy

ANf (K1 4+ 3Kq) = =
g M f l q E .H.: 8. i
’1"7 7.‘.2 Si]] 29 7. Yy 0 [,LJ,-Y —

_ SNf(F.',l + 3l<,q)

E.,-H,+E,-H
7t2 sin 20w (Ey-H+ Ez-Hy)

m A background (capacitor) with E - H # 0 creates an
iInflow of Z current
m Anomalous density of Z charge creates Z field and
non-trivial -~z background

m Non-trivial vz background leads to

Inflow of electro-magnetic current
m Anomalous distribution of electric charge on the brane is created

and electric field is modified as if photon has acquired mass

2Nfei|ﬁ| does not depend

2 (ki + 3Kq) on m; or Ms!

m,YH —

72 sin 20w,
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m In the SM k < 10~2! which leads to the m. 5 < 1070 eV for the
magnetic field 10 Tesla.

m Ildea N° 1. if one “turns on” mass for the photon, the capacitance
of a system would change =- Create an RC-circuit, turn on strong
magnetic field and measure the shift of capacitance. The change of
capacitance % ~ m~g. Possible to measure shift of capacitance
with femto Farad (10~3pF) precision and thus masses m~ g 2
108 eV

m ldea N° 2: Attraction force between two charged parallel plates
(ideal capacitor) can be measured with nanoNewton precision.
Can probe mass range m. g > 10~ eV.

m Tentative limit on measurements of deviation from the Gauss law
~ 10714 eV

m Unique signature m.,; ~ \/|H|
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..and things got messy...

82 (A(2)8:2+ ) + A(2) V22 = —e? (a()8(2) + doe + I )
=) Az .
o (0 + 0, 1) - 51 )
— rZz rT 2( .r r
5 8z (A()F"?) + A(2)0:F"™ = €5 (45 + s, )
7))
c
) oz , A(2) 0 .6 0
'% 0 (A(z)F z) + A(2)82F7F + ——or (’PF r) = e3 (JDF + Jcs,v) ’
O
L] 1
\ A(z)(0:F™ + ;Br(rF"“z)) = —e5J%s .
( 0. (A(z)fI)z> + A(z)V b, — e5mz(z)<I>z = —ep (qz(w)6(z) + JDF z T Jcs z)
A
E 02 (A(z)}'mz) + iz)ar (Tj:mr> - egmg(z)A{B = eg (JDF 2+ T z) )
N
5 0z (A()F*) + A(2)0:F " — emi(2) A" = €5 (ibe, + T2 »
0
c
A
'% O~ (A(z).’F’ez) + A(z)@mﬂ:ﬂCc + iz)ar (’P.'Fer) — egmg(z)Ae = eg (JDF z T Jcs z)
>
UCJT Tz 1 rZ 2 2 z 2 7z
A=) (0T + ~0n (rF™%) ) + eim}(2)A” = —e3TE ; -

back to vvZ]
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m In the SM model fermions have both vector and axial couplings to
gauge fields (e.g. e interaction with electromagnetic and Z field)
m Imagine an extension of the SM where some fermions (either SM
or new ones) interact with both photon A,, and new gauge field 13,, Antoniadis,
m Anomalous triangular diagram induces 4- nggrsw OR
dim Chern-Simons-like coupling between
two fields:

‘CCS = FLG“VAPA“BV BAAp

m We obtain an effective theory

1 2 1 2, Mp 2
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2
L = —3Fal>—3|Fp|>*+=E|d0+ B|?+ KkAABAFs+KkOFsNF4

m The theory is gauge invariant with respect to variation of the B,, —
B, +090,Aand 0 =0 — A.
m However, B,, couples to the current which is not conserved :

oL
Jg: = KA N Flu; 8“Jg:F{,FA/\FA
5B,

m Longitudinal component of the B-field does not decouple and
behaves as ALP with mass mp and coupling Mp p = =E

K




If there is an additional massive particle (with mass my), interacting
with A, and B,,, for E > m, effective Lagrangian becomes non-
local

Now B,, couples to the conserved current Antoniadis,
Boyarsky,
5£ 8 O.R., to
JE = = RANFpA+K—Fp N Fy appear
B 4B, (]

For example, fermions with mass m will produce the following term
In the effective action

2

c —K,(e My _ 5 pgH_ )F AF
v O4+m2 % O4+m? anTa

At energies E =~ mg the production of the longitudinal polarization
is suppressed as (mp/E)?

If 1 eV < mg < 1 keV we will have effects in laboratory but not in
stars!
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Model Ko m~p, GeV To, SEC Lo, cm | Eyui/ Eg
new generation 1 108 3 x 1016 10—° 0

charged v 10~1° | 4 x 10716 108 3x10% | ~ 1
electric neutrality | 10721 | 4 x 1019 10—° 3x10° | ~ 1073

massive ~ 1036 1026 3 x 102 1013 ~ 1010

To ~ 1/m,mg — characteristic time over which the electric field
reaches its final state.

E,.. — the value of the electric field outside the plates of a capacitor
at distances much smaller than Ly ~ 1/m g.

An initial value of electric field E, ~ 107 Volt/m, magnetic field H ~
10° Gauss, the distance between the plates d = 10? cm.
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