

The Physics Case for Axions, WIMPs, WISPs... ...other weird stuff

Joerg Jaeckel⁺

The participants of the Brainstorming&Calculationshop

^tIPPP Durham

Remember Patras

Patras:

31°C Sea-beach Cloud free

Hamburg:

13°C Elbstrand sun free

Remember Patras

Patras:

31°C-**32°C** Sea-beach Cloud free

Hamburg:

13°C-23°C Elbstrand (nearly) sun free

Have fun 🙂

Hints for new Physics

Uglyness of old models

- The Standard Model has many free parameters: O(30)
- Naturalness problems. Finetuning.
 Examples: Higgs mass, θ-angle (strong CP-problem)
- Gravity separate, i.e. not unified.
- (Probably) Breaks down at a finite energy scale
 - Landau poles etc.

Unexplained Stuff

Dark Matter (25%)
 (astrophysical + cosmological observations)

University of Durhan

- Dark Energy (70%)
 (astrophysical + cosmological observations)
- Mass Hierarchies (colliders, neutrino exp, etc)
- Small parameters (θ-angle, again) (neutron electric dipole measurements)

Contradictions (not proven)

- (g-2) deviations from SM prediction
- DAMA anomaly
- PVLAS anomaly

Hints for new Physics Model Building Bottom-up Top-down (theory) (pheno)

Fix problem `here and now'

Go back to drawing board `Start from scratch'

The strong CP problem: Axions

- Introduce new Peccei-Quinn symmetry to solve naturalness problem
- Predict as a consequence a new particle: The Axion (it's a Weakly Interacting Sub-eV Particle) Dark matter candidate Good `physics case' for WISP experiments

University of Durham

The Hierarchy Problem: WIMPs

- Introduce new Super-symmetry to solve hierarchy problem
- Predict zillions of new particles among them WIMPs (Weakly Interacting Massive Particles)

Dark matter candidate

may explain (g-2)

Good `physics case' for WIMP experiment

The PVLAS anomaly: Many WISPs

 Introduce new WISPs to explain PVLAS anomaly

Improve Experiment (anomaly vanishes)

Find loads of unexplored parameter space

Find that exps. are sensitive to ultrahigh energy scales ~10⁵-10¹⁵ GeV

New ideas for experiments

Good `physics case' for new and improved WISP experiment

Hints for new Physics Model Building Bottom-up Top-down (theory) (pheno)

Experiments

Example experiment 0: LHC

The direct approach: MORE POWER

Detects most things within energy range
E.g. may find WIMPs

Example experiment 0: LHC

The direct approach: MORE POWER

- Current maximal energy few TeV
- May miss very weakly interacting matter (Axions, WIMPs, WISPs...)
- Only indirect evidence for dark matter

Example experiment I: WISPs

- Laser is shone on an opaque wall
- One searches for photons `appearing' on the other side of the wall

Light shining through walls experiments and helioscopes

WISPs=Weakly interacting sub-eV particles

 Massive hidden photons (without B-field)
 =analog v-oscillations

 Hidden photon + minicharged particle (MCP)

Example experiment II: WIMPs

University of Durham

- Dark Matter searches.
- Search for recoil of a WIMP on a nucleus

Hints for new Physics Model Building Bottom-up -down (pheno) (theory)

String theory

- Attempt to unify SM with gravity
- New concept: strings instead of point particles

String theory likes SUSY

University of Durham

- Attempt to unify SM with gravity
- New concept: strings instead of point particles

Need SUSY for consistency

WIMPs etc.

`Physics case' for WIMPs strengthened

String theory: Moduli, Axions, etc.

String theory needs Extra Dimensions

Must compactify

 Shape and size deformations correspond to fields: Moduli (WISPs) and Axions Connected to the fundamental scale, here string scale

`Physics case' for WISPs strengthened

String theory likes extra gauge groups

String theory likes extra matter

String theory inspire weird stuff

University of Durham

 Some string theory models predict noncommutativity and other forms of Lorentz symmetry violation

Hints for new Physics Model Building Bottom-up op-down (pheno) (theory) New, cool Experiments

Test Lorentz symmetry

Lorentz symmetry breaking can leads to vacuum birefringence

Test CPT, Matter - Antimatter (a)symmetry

H / H spectroscopy: hyperfine Zeeman transitions

Test very high energy scales.

Conclusions

Conclusions

- Good `Physics Case' for Axions, WIMPs and WISPs
 from bottom-up and top-down models
- Low energy experiments test energy scales much higher than accelerators
 Complementary!
- May provide information on hidden sectors and thereby into the underlying fundamental theory

 Surprises like Lorentz symmetry violation possible! Details will follow soon...

White Paper: The Physics case for...

The participants of the Brainstorming&Calculationshop

Lints for new Physic with of Durham Model Building Bottom-up op-down (pheno (theor Experiments

Experiments

Example experiment I: WISPs

- Laser is shone on an opaque wall
- One searches for photons `appearing' on the other side of the wall

Light shining thorugh walls experiments and helioscopes

WISPS=Weakly interacting sub-eV particles

 Massive hidden photons (without B-field)
 =analog v-oscillations

 Hidden photon + minicharged particle (MCP)

Example experiment II: WIMPs

University of Durham

- Dark Matter searches.
- Search for recoil of a WIMP on a nucleus

Evidence for new physics

WISPs: Axion example

• The strong CP problem

Testing string theory!

- Extra `hidden' U(1) gauge groups!
- Matter charged under hidden U(1)
- Kinetic mixing term!

Matter charged under hidden U(1)s

How to get Kinetic Mixing ...

• String Theory:

How to get Kinetic Mixing ...

String Theory:

Typically we have kinetic mixing!

Conclusions

Searching new particles

- Light particles coupled to photons are "expected" in Extensions of the Standard Model, e.g. string theory
- We can search for them using low energy experiments with photons!!
- Already existing experiments give interesting new constraints!
- Many more cool experiments possible!

closed string

Visible

Hidden

Photons are a good probe of Fundamental physics complementary to accelerator experiments Photons are a good probe of Fundamental physics complementary to accelerator experiments

