Polarization measurements of GRBs and axion (ALP)-photon coupling

Alexander Sakharov & Andre Rubbia

4th Patras Workshop, June 19, DESY Hamburg

Summary

Axion-photon mixing, polarization effects

Astrophysical and cosmological effects of axion-photon mixing

Phenomenology of GRBs, polarization measurements

Polarized prompt emission and axion-photon mixing

Future prospects

Conclusions

Invisible axion (ALP)

Non-perturbative QCD effects violate CP

 $\mathcal{L}(\theta) = \theta \frac{g^2 F_a^{\mu\nu} \tilde{F}_{a\mu\nu}}{32\pi^2}$

Additional CP violating source

 \mathcal{M}_q — diagonal

The total strong CP violation $\bar{\theta} = \theta + \text{Arg}$ det \mathcal{M}_q

Consistency with the experimental bound $|d_n| \le 3 \times 10^{-26} \ e \cdot cm$ $|\bar{\theta}| < 10^{-9}$

Axion-photon mixing

Two photon vertex interaction

(Raffelt & Stdolsky, 1988)

(Maiani, Petronzio & Zavattini, 1986)

$$\mathcal{L}_{a\gamma} = -\frac{1}{4} g_{a\gamma\gamma} F_{\mu\nu} \tilde{F}^{\mu\nu} a = g_{a\gamma\gamma} \mathbf{E} \cdot \mathbf{B}_{\mathbf{0}} a$$

1a

 $g_{a\gamma\gamma}$

KSVZ, DFSZ

$$n_{\text{perp}}^{\text{axion}} = n_{\text{QED}}^{\text{QED}}$$

$$n_{\text{par}}^{\text{axion}} = n_{\text{QED}}^{\text{par}} + \frac{1}{2\omega} \left(\left[\left(\frac{B_0 \sin \theta}{M} \right)^2 + \left(\Delta_{\text{osc}} + \frac{m_a^2}{2\omega} \right)^2 \right]^{1/2} - \left(\Delta_{\text{osc}} + \frac{m_a^2}{2\omega} \right) \right)$$

$$B_0$$

$$L$$

$$B_0$$

$$E$$

$$e = \frac{g_a^2 \gamma \gamma}{m_a^2} \omega^2 B_0^2 \sin^2 \left(\frac{m_a^2 L}{4\omega} \right) \sin 2\varphi$$

Astrophysical and cosmological consequences

Polarization properties and shape of distant radio galaxies (Harari & Sikivie 1992);

QUASARS (Hutsemekers et al 2005, Gnedin, Pitrovich & Natsvlishvili 2006)

The diffuse x-ray background (Krasnikov 1996; Fairbairn et al 2007)

Ultra and very high energy gamma rays (Gorbunov, Raffelt & Semikoz 2001; Csaki et al 2001, de Angelis & Roncadelli 2007)

Dimming of distance sources by photon-ALP conversion

(Csaki, Kaloper & Terning 1996)

CMB distortions (Chen 1995, Mirizzi, Raffelt & Serpico 2005)

ALP-photon conversion in Sun spots (Carlson & Tseng 1995; Zioutas et al 2007) in magnetic field of pulsars (Dupays, Rizzo, Roncadelli & Bignami 2005)

Gamma ray burst (GRB)

GRBs – sudden and unpredictable burst of high energy X / soft gamma rays of huge intensity and typical duration of tens of seconds coming from random direction in the sky

Most of the flux detected from 10KeV to 1-2 MeV

Very transient, unclassifiable time profiles

Estimated rate 1.8 burst/day

X ray and optical afterglow

Redshift z=0.03-6.3 (>70 measured)

High energy prompt emission (up to 100 MeV) EGRET

BATSE (GRO)

Beppo-SAX

INTEGRAL

HETE

GLAST

Polarized prompt emission from GRB 021206 !?

Prompt emission from GRB021206 found to be linearly polarized at 0.15-2 MeV

 $\Pi = (80 \pm 20)\%$

(Coburn & Boggs 2003)

The analysis has been challenged

(Rutledge & Fox 2003)

The analysis has been defended

(Coburn & Boggs 2003)

Les significant signal has been found

 $\Pi = 41^{+57}_{-44}\%$

(Wiggler at al 2004)

GRB 021206

RHESSI

Other evidence of polarized GRBs (BATSE)

3-100 keV

BATSE Albedo Polarimetry System (BAPS)

GRB 930131 $\Pi > 35\%$ GRB 960924 $\Pi > 50\%$

GRB flux scatters off the atmosphere; the distribution is recorded as it passes through a volume equivalent to where BATSE was at the time of the burst.

Polarized flux preferentially scatters perpendicular to the direction of the polarization vector.

Any distribution produced as a result of polarized flux will appear as an anti-phase excess toward the limbs of the Earth.

(Willis, et al 2003)

Polarization studies by INTEGRAL

Masked spectrometer abord INTERGAL as a polarimeter

(McGlynn, et al 2007)

GRB 041219a $\Pi = 96^{+39}_{-40}\%$ 100-350 keV

For each simulation run the polarization angle was set between 0 and 180 degree n 10 degree step. Compatible with $\Pi \simeq 60\%$

Similar fluence but over shorter time

A spectral harder burst, which would produce more multiple events and stronger polarization signature

DOCTOR FUN

Despite funding cuts, research into the origin of gamma-ray bursts continues as best it can.

This cartoon is made available on the Internet for personal viewing only. Opinions expressed herein are solely those of the author.

Relatvistic fireball (beamed)

"General" GRB modeling elements

Relativistic flow

relativistic fireball (Goodman, 1986; Paczynski, 1990; Piran & Shemy 1993)

Axionic induced dichroism in GRB

The polarization signature

All photon interaction mechanisms relevant to high-energy astrophysics are sensitive to linear polarization

Distribution in the emission direction of the interaction products

 $f(\phi) = A + B\cos^2\phi$

The modulation
$$\mu = \frac{(f_{\max} - f_{\min})}{(f_{\max} - f_{\min})} = \frac{B}{2A + B}$$

The sensitivity of a polarimeter depends on both its analyzing power and its quantum efficiency

$$\Pi_{\rm MDP} = \frac{1}{\mu\epsilon} \frac{n_\sigma}{S} \left(\frac{2\epsilon S + B}{t}\right)^{1/2}$$

A lost of statistics increases the minimal detectable polarization

Relative misalignment

The polarization rotation angle

 $\Delta \epsilon \approx \frac{L_{\text{GRB}}}{2\pi} \frac{g_{a\gamma\gamma}^2}{m_a^2} \Delta \omega B^2 \qquad \text{Extension} \qquad B \simeq 10^9 \text{ G}$ $L_{\text{GRB}} \simeq 10^9 \text{ cm}$ $L_{\text{GRB}} \simeq 10^9 \text{ cm}$ $\text{The energy difference} \quad \Delta \omega = |\omega_2 - \omega_1| \approx 1 \text{ MeV}$

Preserve the statistical pattern of the time integrated polarization signal from a GRB in a detector for the energy range $\omega_1 - \omega_2$

$$\begin{split} \Delta \epsilon &\leq \frac{\pi}{2} \qquad \qquad g_{a\gamma\gamma} \leq \pi \frac{m_a}{B\sqrt{\Delta\omega L_{\mathsf{GRB}}}} \\ \mathsf{GRB021206} \left(\mathsf{RHESSI}\right) \qquad \qquad \omega_1 \approx 0.2 \ \mathsf{MeV} \qquad \qquad \omega_1 \approx 1.3 \ \mathsf{MeV} \\ g_{a\gamma\gamma} &\leq 2.2 \cdot 10^{-8} \frac{m_a}{1 \ \mathsf{eV}} \ (\mathsf{GeV})^{-1} \end{split}$$

 $\left| \frac{2\pi\omega}{L_{\text{GRB}}} \right|$ $m_a \leq m_a$

Future prospects

(Black, 2007)

ACT (McConnell & Ryan, 2004) POLAR (Produit et al, 2005)

POLAR

Available online at www.sciencedirect.com

Nuclear Physics B (Proc. Suppl.) 166 (2007) 273-275

www.elsevierphysics.com

POLAR: A compact detector for GRB polarization measurements

J.P. Vialle ^a, F. Barao ^b, C. Casella ^c, K. Deiters ^d, S. Deluit ^e, C. Leluc ^c , A. Mchedlishvili ^d , M. Pohl ^c , N. Produit ^e , D. Rapin ^c , E. Suarez-Garcia ^d , Ch. Tao ^f , R. Walter ^e , C. Wigger ^d , A. Zehnder ^d

^aLAPP/IN2P3/CNRS, Annecy, France

^bLIP, Lisboa, Portugal

^cDPNC, Université de Genève, Switzerland

^dPSI, Villigen, Swizerland

^eUniversité de Genève, Switzerland

^fCPPM, Université de la Méditerrannée, France

Though polarization measurements of X-rays can provide essential information for identifying processes responsible of their emission by astrophysical objects, almost no experimental data exist yet. We propose here a novel wide field compact detector for hard X-ray polarization measurements based on Compton scattering process and made of low-Z fast scintillators.

Advanced Compton Telescopes

ACT Enabling Detectors

- 1 mm³ resolution
- $\Delta E/E \sim 0.2$ -1%
- 10-20% efficiency
- background rejection
- polarization, wide FoV

Conclusions

A polarized gamma ray emission spread over a sufficiently wide energy band from a strongly magnetized astrophysical object like GRBs offers an opportunity to test the hypothesis of ALP

Any evidence of polarized gamma rays coming from a GRB could be interpreted as a constraint on axion-photon coupling

Future space based polarimeters like ACT and POLAR are very relevant for ALP physics