Hunting for Chameleons Amanda Weltman

DESY June 2008

University of Cambridge

University of Cape Town

Plan

- Motivation Theoretical + Observational
- Chameleon idea and thin shell effect
- Predictions for tests in space
- Dark Energy Candidate
- Laboratory tests

See A. Chou talk next

• Exploring parameter space In Progress

Unique chameleon features require rethinking axion bounds and experiments.

Motivation

- Massless scalar fields are abundant in String and SUGRA theories
- Massless fields generally couple directly to matter with gravitational strength
 - Unacceptably large Equivalence Principle violations
 - Coupling constants can vary
 - Masses of elementary particles can vary

Light scalar field - Gravitational strength coupling

Opportunity! - Connect to Cosmology

Solutions?

1. Suppress the coupling strength :

- String loop effects Damour & Polyakov
- Approximate global symmetry Carroll

2. Field acquires mass due to some mechanism :

- Invoke a potential
 - Chameleon Mechanism Khoury & A.W
 - Flux Compactification KKLT
 - Special points in moduli space new d.o.f become light Greene, Judes, Levin, Watson & A.W

Observations

Accelerated expansion of the Universe

$$\frac{\ddot{a}}{a} = -(\rho + 3p)$$

- Dark Energy p < 0
- Cosmological Constant, Λ
- Dynamical e.o.s w \neq -1

Quintessence → Need light scalar field

$$m_{\phi} < H_0 \approx 10^{-33} \mathrm{eV}$$

Supernova Cosmology Project Perlmutter et al. (1998)

More Observations

Webb et. Al.

• Absorption lines in QSO spectra imply variation in fine structure constant $\Delta \alpha \sim 10^{-5}$

 Observations suggest existence of scalar fields evolving on cosmological time scales 0.2 < z < 3.7

Chameleon Effect

astro-ph/0309300 PRL J. Khoury and A.W astro-ph/0309411 PRD J. Khoury and A.W

Mass of scalar field depends on local matter density

In region of high density \rightarrow mass is large \Rightarrow EP viol suppressed

In solar system \rightarrow density much lower \rightarrow fields essentially free

On cosmological scales \rightarrow density very low \Rightarrow m \sim H₀

Field may be a candidate for acc of universe

Scalar fields can have cosmological effects but **DO NOT** result in EP violations in lab as we live in dense environment

Use EP tests done on earth to **constrain** the parameters of the model (These give largest constraints)

Use these constraints to make crucial predictions for tests in space and in the lab

Could this field have cosmological effects?

Ingredients

astro-ph/0408415 PRD P. Brax, C. van de Bruck, J.Khoury, A. Davis and A.W

Reduced Planck Mass

 $M_{Pl} = (8\pi G)^{-1/2}$

Coupling to photons

Matter Fields

$$S = \int d^4x \sqrt{-g} \left(\frac{M_{\rm Pl}^2}{2} R - (\partial \phi)^2 - V(\phi) \right) - \frac{e^{\beta_\gamma \phi/M_{\rm Pl}}}{4} F^{\mu\nu} F_{\mu\nu} + S_m(g^{(i)}_{\mu\nu}, \psi^{(i)}_m)$$

$$g = detg_{\mu\nu}$$

Einstein Frame Metric

$$g_{\mu\nu}^{(i)} = e^{2\beta_i \phi/M_{Pl}} g_{\mu\nu}$$

Conformally Coupled

Potential is of the runaway form

Runaway Potential

$$\lim_{\phi \to \infty} V = 0, \qquad \lim_{\phi \to \infty} \frac{V_{,\phi}}{V} = 0, \qquad \lim_{\phi \to \infty} \frac{V_{,\phi\phi}}{V_{,\phi}} = 0...$$

$$\lim_{\phi \to 0} V = \infty, \qquad \lim_{\phi \to 0} \frac{V_{,\phi}}{V} = \infty, \qquad \lim_{\phi \to 0} \frac{V_{,\phi\phi}}{V_{,\phi}} = \infty \dots$$

e.g.
$$V(\phi) = M^{4+n} \phi^{-n}$$

$$V(\phi) = M^4 exp(\frac{M^n}{\phi^n})$$

Effective Potential

Energy density in the ith form of matter

Equation of motion :

$$\nabla^2 \phi = V_{,\phi} + \sum_i \frac{\beta_i}{M_{Pl}} \rho_i e^{\beta_i \phi/M_{Pl}}$$

Dynamics governed by Effective potential :

$$V_{eff}(\phi) \equiv V(\phi) + \sum \rho_i e^{\beta_i \phi / M_{Pl}}$$

Exterior Solution

Thin Shell

$$\phi(r) \approx -\left(\frac{\beta}{4\pi M_{Pl}}\right) \left(\frac{3\Delta R_c}{R_c}\right) \frac{M_c e^{-m_{\infty} r}}{r} + \phi_{\infty} \quad \text{if} \quad \frac{\Delta R_c}{R_c} \ll 1 \,,$$

$$(r) \approx -\left(\frac{\beta}{4\pi M_{Pl}}\right)\frac{M_c e^{-m_{\infty}r}}{r} + \phi_{\infty} \qquad \text{if} \quad \frac{\Delta R_c}{R_c} > 1$$

$$\frac{\Delta R_C}{R_C} = \frac{\phi_{\infty} - \phi_C}{6\beta M_{Pl}\Phi_C}$$

 ϕ

Newtonian Potential

Object displays thin shell effect

Thin shell ⇒

$$eta_{ ext{eff}} = 3rac{\Delta R_C}{R_C}eta$$

Fifth Force

Require both earth and atmosphere display thin shell effect

$$\frac{\Delta R_E}{R_E} < 10^-$$

Constraints on Model Parameters

$$\frac{\Delta R_E}{R_E} < 10^{-7} + V(\phi) = M^{4+n} \phi^{-n}$$

$$M \le 10^{-3} eV \approx (1mm)^{-1}$$

Coincides with Energy scale of Dark Energy

$$m_{atm}^{-1} \le 1mm$$

 $m_G^{-1} \le 10^4 AU$
 $m_0^{-1} \le 10^3 pc$

$$m_{atm} \ge 10^{-3} eV$$
$$m_G \ge 10^{-21} eV$$
$$m_0 \ge 10^{-23} eV$$

Predictions for Tests in Space

New Feature !!

Different behaviour in space

Tests for UFF

$$\eta \equiv 2\frac{|a_1 - a_2|}{a_1 + a_2}$$

Eöt-Wash Bound $\eta < 10^{-13}$

Near- future experiments in space :

 STEP
 η ~ 10⁻¹⁸

 GG
 η ~ 10⁻¹⁷

 MICROSCOPE
 η ~ 10⁻¹⁵

We predict

 $\beta^2 \cdot 10^{-19} < \eta < \beta^2 \cdot 10^{-11}$

SEE Capsule

$$|\vec{F}| = \frac{GM_1M_2}{r^2} \left(1 + 2\beta_1\beta_2\right) \qquad 10^{-15} < \Delta \mathsf{R}_\mathsf{E}/\mathsf{R}_\mathsf{E} < 10^{-7}$$

Corrections of O(1) to Newton's Constant

Cosmological Evolution

astro-ph/0408415 PRD P. Brax, C. van de Bruck, J.Khoury, A. Davis and A.W What do we need?

- attractor solution
- If field starts at min, will follow the min
- $\bullet \ \varphi$ Slow rolls along the attractor

• Variation in m \rightarrow is constrained to be less than ~ 10%. Constrains $\phi_{BBN} \rightarrow$ the initial energy density of the field.

$$\Omega^i_\phi < rac{1}{6}$$

Weaker bound than usual quintessence

Strong Coupling

Strong coupling not ruled out by local experiments! Mota and Shaw

Thin shell suppression

$$eta_{ ext{eff}} = 3rac{\Delta R_C}{R_C}eta$$

Remember :

$$\frac{\Delta R_C}{R_C} = \frac{\phi_\infty - \phi_C}{6\beta M_{Pl}\Phi_C}$$

 \implies Effective coupling is independent of $\beta!!$

If an object satisfies thin shell condition - the φ force is β independent

Lab experiments are compatible with large β - strong coupling!

 $\beta >> 1 \implies$ more likely to satisfy thin shell condition

⇒ Thin shell possible in space ⇒ suppress signal

Strong coupling is not ideal for space tests - loophole

Pause...Reflect

What have we achieved so far?

- No EP violations on earth : agrees with gravity experiments
- Exciting cosmological consequences : chameleon could be causing current accelerated expansion
- Made predictions for experiments in space

BUT

• Large coupling creates a loophole for space tests Opportunity?

Lab tests on earth can probe a range of parameter space that is complementary to space tests.

Coupling to Photons

Remember :

$$S = \int d^4x \sqrt{-g} \left(\frac{M_{\rm Pl}^2}{2} R - (\partial\phi)^2 - V(\phi) \right) \left(-\frac{e^{\beta_\gamma \phi/M_{\rm Pl}}}{4} F^{\mu\nu} F_{\mu\nu} + S_m(g^{(i)}_{\mu\nu}, \psi^{(i)}_m) \right)$$

Introduces a new mass scale :

$$rac{1}{M_{\gamma}}=rac{eta_{\gamma}}{M_{
m Pl}}$$

Effective potential :

 $\rho_{\gamma} \equiv \frac{1}{2}(B^2 - E^2)$

$$V_{\text{eff}}(\phi, \vec{x}) = V(\phi) + e^{\frac{\phi}{M_m}} \rho_m(\vec{x}) + e^{\frac{\phi}{M_\gamma}} \rho_\gamma(\vec{x})$$

We can probe this term in quantum vacuum experiments

Use a magnetic field to disturb the vacuumProbe the disturbance with photons

Test the F² term

Afterglow Experiments

[Photon]-[dilaton-like chameleon particle] regeneration using a "particle trapped in a jar" technique " http://gammev.fnal.gov

A. Chou *et. Al.* 0806.2438 [hep-ex]
See also - Gies *et. Al.* + Ahlers *et. Al. (DESY)*Alps at DESY, LIPSS at JLab, OSQAR at CERN, BMV

Idea : • Send a laser through a magnetic field

- Photons turn into chameleons via F² coupling
- Turn of the laser
- Chameleons turn back into photons
- Observe the afterglow

Failing which - rule out chunks of parameter space!

- a) Chameleon production phase: photons propagating through a region of magnetic field oscillate into chameleons
 - Photons travel through the glass
 - Chameleons see the glass as a wall trapped
- $m_{
 m wall}>>m_{
 m jar}$
- Afterglow phase: chameleons in chamber gradually decay back into photons and are detected by a PMT

Recasting CAST

Essential difference between the sun and a lab vacuum?

$$ho_{
m sun} \sim 10^{14}
ho_{
m lab}$$

To explain PVLAS requires $m_{\phi} \sim \mathrm{meV}$ & $M \sim 10^{6} \mathrm{GeV}$

 $m_{\phi} \sim {
m meV}$

Conflicts with CAST:

Lab meV chameleons in the sun : $m_{
m sun} \sim 10^{-2}
m GeV$

Chameleons - naturally evade CAST bounds and can explain PVLAS

Brax, Davis, van de Bruck

 $\implies M > 10^{10} \text{GeV}$

Parameter Space Estimates

Conclusions/Outlook

- Chameleon fields: Concrete, testable predictions
- Space tests of gravity
- Lab tests can probe a range of parameter space that is complementary to space tests (qm vacuum and casimir)
- Intriguing cosmological consequences : chameleon could be causing current accelerated expansion
- New bounds from Astrophysics and Cosmology

Complementary tools of probing fundamental physics

