## Dark Matter Directional Detection

#### **Neil Spooner - on behalf of the DRIFT collaboration**





### **Results for various halos**

Our predictions for TPC-type detector with 200 μm resolution B. Morgan et al., Phys. Rev. D71 (2005) 103507



# A SIGNAL! but can it be true? but is it galactic?

Recent work here (4 papers in preparation):

- (i) low threshold use for axions searches
- (ii) low background radon progeny background
- (iii) directional signals
- (iv) head-tail recoil vector discrimination

thanks to D. Muna, S. Paling, P. Majewski (USFD),

D. Snowden-Ifft (Oxy)





DRIFT

Burgos et al, arXiv:0707.1758 (sub Astrop. Hys, 2007) - Hist DII data Burgos et al, arXiv:0707.1758 (sub Astrop.Phys, 2007) - DII alpha results Spooner, Majewski et al, arXiv:1107..- head-tail simulations DARK2007 Lightfoot et al., Astrop Phys, 27 (2007) 490 Tziaferi et al., Astroparticle Physics 27 (2007) 326 Spooner. J, Phys. Soc. Japan <u>http://arxiv.org/abs/0705.3345</u> Alner et al., Nucl. Instrum. and Meth. in Phys. Res. A555 (2005) 173 Alner et al., Nucl. Instrum. and Meth. in Phys. Res. A 535 (2004) 644



gamma, electron, recoil tracking in space
gamma, electron, recoil tracking in time
at low threshold > I keV
multi-target - F, S, C, Xe... (SD and SI)
maximum information on events
including sense direction of recoils



### **DRIFT IIa design & dimensions**





- 1 m<sup>3</sup> active volume back to back MWPCs
- Gas fill 40 Torr  $CS_2 => 167$  g of target gas
- 2 mm pitch anode wires left and right
- Grid wires read out for  $\Delta y$  measurement
- Veto regions around outside
- Central cathode made from 20 μm diameter wires at 2 mm pitch
- Drift field 624 V/cm
- Modular design for modest scale-up



#### **Range/track discrimination**

#### simulation



### Track reconstruction, R2, R3













Threshold

Old 1ft<sup>3</sup> data

NIPS

Threshold



Threshold







#### KK axion limit prediction (preliminary)

BASIC LIMIT - Add Pb shielding until vessel background dominates (10 cm for 1 ppb) [1 m<sup>3</sup>yr, CS<sub>2</sub>, 160 Torr,  $m_a$  = 6-20 keV, 1 ppbU/Th in vessel]



B. Morgan et al. Astrop. Phys 23 (2005) 287,

## **Energy Threshold - new analysis**





<sup>55</sup>Fe track reconstruction and digital polynomial smoothing - data fit to

exponential decay(noise) plus Gaussians (escape and full absorption peaks).

#### Energy thresholds -->

Note these are not the trigger thresholds yet

Paper in preparation - D. Muna

| Source of Track        | Energy (keV) |
|------------------------|--------------|
| Electron               | 1.23         |
| Alpha                  | 1.23         |
| Carbon nuclear recoil  | 2.15         |
| Sulphur nuclear recoil | 3.46         |

#### **Track reconstruction**



### Alpha range data



### Radon Progeny Recoils (RPRs)



### Dlla WIMP run - background

For typical analysis run - 4.36 days background, neutron run 0.97 hours (2005/6)

#### calibrated recoil efficiencies

| Nips        | Rate (Hz)         | Efficiency (%) |
|-------------|-------------------|----------------|
| 1000 - 5000 | $0.075 \pm 0.005$ | 39 ± 3         |
| 2000 - 5000 | $0.066 \pm 0.004$ | 60 ± 7         |
| 2500 -5000  | $0.055 \pm 0.004$ | 70 ± 11        |



#### remaining rates



remaining events are <u>recoils</u> identified as radon progeny recoils (RPR)

> LIMIT published in Tziaferi thesis

### Rn decay chain



 Gaseous element in Uranium decay chain

• Rn222 half life = 3.8 days

 4 alpha decays before reach stable Pb-206

 Radon levels at Boulby are actually very low! (~3 Bq/m<sup>3</sup>)

### **Rn Emanation Facility - <sup>218</sup>Po**





#### DIIa samples:

| Fill gas | Emanation                                                            | Humidity                                                                          | Raw result                                                                                                                                                                                                                     | Adjusted result                                                                                                                                                                                                                                                                                                                                                                    |
|----------|----------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | time (days)                                                          | (%)                                                                               | (Bq/m <sup>3</sup> )                                                                                                                                                                                                           | (Rn atoms.s <sup>-1</sup> )                                                                                                                                                                                                                                                                                                                                                        |
| Dry N2   | 12.5                                                                 | 24                                                                                | 9.4 +/- 0.7                                                                                                                                                                                                                    | 0.36 +/- 0.03                                                                                                                                                                                                                                                                                                                                                                      |
| Dry N2   | 12                                                                   | 37                                                                                | 1.5 +/- 0.3                                                                                                                                                                                                                    | 0.05 +/- 0.01                                                                                                                                                                                                                                                                                                                                                                      |
| Dry N2   | 6.5                                                                  | 23                                                                                | 10.1 +/- 0.7                                                                                                                                                                                                                   | 0.50 +/- 0.03                                                                                                                                                                                                                                                                                                                                                                      |
| Dry N2   | 10                                                                   | 37                                                                                | 0.3 +/- 0.2                                                                                                                                                                                                                    | <0.02 *                                                                                                                                                                                                                                                                                                                                                                            |
| Dry N2   | 7                                                                    | 19                                                                                | 1.3 +/- 0.3                                                                                                                                                                                                                    | 0.04 +/- 0.02                                                                                                                                                                                                                                                                                                                                                                      |
| Dry N2   | 7                                                                    | 33.3                                                                              | 0.6 +/- 0.2                                                                                                                                                                                                                    | < 0.03 *                                                                                                                                                                                                                                                                                                                                                                           |
|          |                                                                      |                                                                                   | Total                                                                                                                                                                                                                          | 0.95 +/- 0.05                                                                                                                                                                                                                                                                                                                                                                      |
|          | Fill gas<br>Dry N2<br>Dry N2<br>Dry N2<br>Dry N2<br>Dry N2<br>Dry N2 | Fill gasEmanation<br>time (days)Dry N212.5Dry N212Dry N26.5Dry N210Dry N27Dry N27 | Fill gas     Emanation<br>time (days)     Humidity<br>(%)       Dry N2     12.5     24       Dry N2     12     37       Dry N2     6.5     23       Dry N2     10     37       Dry N2     7     19       Dry N2     7     33.3 | Fill gas     Emanation<br>time (days)     Humidity<br>(%)     Raw result<br>(Bq/m <sup>3</sup> )       Dry N2     12.5     24     9.4 +/- 0.7       Dry N2     12     37     1.5 +/- 0.3       Dry N2     6.5     23     10.1 +/- 0.7       Dry N2     10     37     0.3 +/- 0.2       Dry N2     7     19     1.3 +/- 0.3       Dry N2     7     33.3     0.6 +/- 0.2       Total |

\* The limit of sensitivity of the method (see above)

- Main offenders = Ribbon cables and Coax. cables
- Total of items measured = 0.95 +/- 0.05 Rn atoms.s<sup>-1</sup>:

DRIFTIIa: July 2005 390 events / day

DRIFTIIb: June 2006 31.3 events / day

DRIFTIIb(refit 2): July 2007 expected.....

#### **Central Cathode Cleaning**

Central Cathode plane (512 wires) cleaned with nitric acid process





#### before cleaning





### **Central Cathode Cleaning**

#### **Background RPRs vs neutrons**

#### neutron calibration (S recoils)



Preliminary interpretation: (i) remaining short-life cathode RPRs can be cut and reduced by flushing, (ii) remaining MWPC RPRs (~1/day)



### **Understanding Head-Tail**

Example of energy loss distributions for 400keV Sulfur ion

distribution normalized along the track (like 3D reconstruction)

distribution normalized along initial ion direction (like 1D reconstruction)









t)

### **Head-Tail analysis**

| Run                            | N     | Left              | Right             | Left-Right          | S      |
|--------------------------------|-------|-------------------|-------------------|---------------------|--------|
| +x                             | 8673  | $1.074\pm0.008$   | $1.069 \pm 0.004$ | $0.005 \pm 0.009$   | 0.549  |
| -y                             | 5859  | $1.082\pm0.006$   | $1.083\pm0.006$   | $-0.001 \pm 0.009$  | -0.121 |
| +z                             | 5829  | $1.145\pm0.009$   | $1.007\pm0.006$   | $0.14 \pm 0.01$     | 13.4   |
| -Z                             | 8755  | $0.995 \pm 0.006$ | $1.143\pm0.005$   | $-0.147 \pm 0.008$  | -19.2  |
| -                              | -     | -                 | -                 | Tail/Head-Head/Tail | -      |
| Optimal $(+z \text{ and } -z)$ | 14458 | -                 | -                 | $0.143 \pm 0.006$   | 23.8   |
| Anti-optimal (+x and -y)       | 14397 | -                 | -                 | $0.005\pm0.006$     | 0.756  |

#### Amplitude of oscillation -Tail/Head - Head/Tail

Note: extrapolation indicates head-tail discrimination continues below current threshold

Clear head-tail discrimination!



### Conclusion

**Comment:** we will need the maximum information on events to show definitively that WIMPs exist in the galactic halo!

Low pressure TPC (1m<sup>3</sup> DRIFT) has:

- low energy threshold
- recoil tracking 3D
- dE/dx discrimination
- range discrimination
- head-tail sense discrimination
- ability to identify multi-prong events (double-gamma - KK axion; recoil+gamma - DAMA?)

V<sub>0</sub>

Neil Spooner - Sheffield

recoi

e-?