Indirect search for dark matter with H.E.S.S.

Joachim Ripken for the H.E.S.S. collaboration Institut für Experimentalphysik, Universität Hamburg

- Introduction
 - $-\gamma$ -radiation from WIMP dark matter
 - The H.E.S.S. experiment
- Observations with H.E.S.S.
 - Galactic objects
 - Extragalactic objects
- Outlook and summary

$\gamma\text{-radiation}$ from annihilating WIMP dark matter

Bertone et al., Phys. Rept., 405:279, 2005

- Self annihilation of WIMP dark matter produces γ-radiation
- Direct production of photons leads to two emission lines (smoking gun), but is loop suppressed
- Photon production in secondary processes leads to continuous spectrum
- Radiative corrections contribute (not considered yet; Bringmann et al. 2007)

⇒ Production of very high energy gamma radiation in WIMPs self annihilation

γ -radiation from WIMP dark matter

$$\begin{split} \Phi(E) &= 2.8 \cdot 10^{-10} \mathrm{cm}^{-2} \mathrm{s}^{-1} \cdot \left(\frac{100 \text{ GeV}}{m_{\mathrm{WIMP}}}\right)^2 \cdot \frac{dN_{\gamma}}{dE} \cdot \frac{\langle \sigma v \rangle}{\mathrm{pb} \cdot c} \cdot \bar{J}(\Delta \Omega) \Delta \Omega \\ \bar{J}(\Delta \Omega) \Delta \Omega &= \frac{1}{8.5 \text{ kpc} \cdot (0.3 \text{ GeV/cm}^3)^2} \cdot \int_{\Delta \Omega} d\Omega \int_{\mathrm{los}} ds \ \varrho^2 \end{split}$$

 \implies Search for γ -radiation from high density regions

$\gamma\text{-radiation from WIMP dark matter}_{\text{Energy spectrum}}$

Neutralino annihilation:

$B^{(1)}$ annihilation:

- Two investigated WIMP candidates:
 - Neutralino (Supersymmetry)
 - $B^{(1)}$ (Kaluza-Klein-theory)
- Many possible $\gamma\text{-radiation spectra}$ for Neutralino

⇒ Continuum photon spectra from WIMP self annihilation

γ -radiation from WIMP dark matter

- Uncertainty in density profile leads to high uncertainty in flux normalisation
- Often used parametrisation:

$$\varrho(r) = \varrho_0 \cdot \frac{r_c^{\gamma}}{r^{\gamma}} \cdot \frac{(r_c^{\alpha} + r_s^{\alpha})^{(\beta - \gamma)/\alpha}}{(r^{\alpha} + r_s^{\alpha})^{(\beta - \gamma)/\alpha}}$$

• Special cases: NFW- and Moore-profile (*N*-body-simulations)

Two different density profiles investigated

The H.E.S.S. experiment in Namibia

- Stereoscopic observation of air showers (Cherenkov light)
- Distinguish photon induced air showers from hadronic
- Search for photon sources on sky
- In full operation since 2004

- Angular resolution $\approx 0.08^{\circ}$ per event
- Energy range $\approx 100 \text{ GeV} 100 \text{ TeV}$
- $\Delta E/E \approx 15\%$

The Galactic center as seen by H.E.S.S.

- Other potential astrophysical sources of high energy γ-radiation in this region:
 - Supermassive black hole
 - Supernova remnants
 - Molecular clouds
 - Pulsar wind nebula

- Would need high WIMP mass and high annihilation cross section
- Energy spectrum not compatible with annihilation radiation neither from neutralinos nor from $B^{(1)}$

Dark Matter in the Galactic center

- Fit energy spectrum with annihilation radiation + background
- Increase part of annihilation radiation until fit becomes unacceptable

\implies Robust method for calculation of upper limits

Dark Matter in the Galactic center Limits on annihilation cross section

Assuming density profile from Navarro, Frenck and White (NFW) $(\gamma=1,~eta=3)$

Ripken et al. ICRC 2005

\Rightarrow Upper limits not constraining for NFW profile

Dark Matter in the Galactic center Limits on density profile

Ripken et al. ICRC 2005

 \Rightarrow Steep profiles can be ruled out

The sagittarius dwarf galaxy

Neutralinos:

$B^{(1)}$:

- Dwarf galaxy
- Distance 24 kpc
- Realistic models of density profile exist
- Observation with H.E.S.S. (11 h) \implies No signal found

⇒ Upper limits on annihilation cross section (Aharonian et al. 2008)

The unidentified source HESS J1303-631 A Dark Matter clump?

- Serendipitiously detected TeV-γ-rays during observations of PSR B1259-63
- Extended source with no flux variability
- No known counterpart in other wavelenths
- ≈ 10 unidentified sources known. If DM clumps \Rightarrow common spectra. This is not the case.

⇒ Annihilation spectrum doesn't fit measured spectrum well

The unidentified source HESS J1303-631 A Dark Matter clump?

- Compare luminosity profile with expectations from density profile
- Parametrisation:

$$\varrho(r) = \varrho_0 \cdot \frac{r_c^{\gamma}}{r^{\gamma}} \cdot \frac{(r_c^{\alpha} + r_s^{\alpha})^{(\beta - \gamma)/\alpha}}{(r^{\alpha} + r_s^{\alpha})^{(\beta - \gamma)/\alpha}}$$

• Best fit: $\gamma = -0.8$ in contradiction to NFW-profile ($\beta = 3$ and $\gamma = 1$) and Moore-profile ($\beta = 3$ and $\gamma = 1.5$)

⇒ Luminosity profile not as concentrated than expected from dark matter clumps

Intermediate mass black holes

- Intermediate mass black holes $(10-10^6 M_{\odot})$ can accumulate dark matter into mini-spikes (Bertone et al. Mod. Phys. Lett., 95:011301, 2005)
- Search for IMBH candidates in galactic plane scan
- No candidate found (see arXiv:0806.2981)

⇒ Limits on annihilation cross section possible

The radio galaxy M87

- Center of Virgo cluster
- 16 Mpc distance
- Detection in TeV- γ -rays 1998/99 by HEGRA
- Confirmed 2004 and 2005 by H.E.S.S. with fast variable flux (Aharonian et al. Science 2006)
- Low flux state high above flux expectations
- Upper limits on dark matter high above model expectations, too

 \Rightarrow No dark matter detectable so far

Outlook

- Lower energy window with GLAST
- Higher sensitivity with HESS II and CTA
- Accelerator search with LHC
- Direct search experiments with
 - larger detector
 - better background reduction

\implies Work in progress. We will find it

Summary

- Search for photons from WIMP self annihilation
- Limits on dark matter content in Galactic Center
- Upper Limits from observations of sagittarius dwarf galaxy
- Upper limits from intermediate black holes
- Unidentified source HESS J1303-631 unlikely dark matter clump
- Limits on dark matter content in M87