Polarization measurements and their perspectives: PVLAS Phase II

Probing Quantum Vacuum and WISP Physics

Giovanni Cantatore Università e INFN – Trieste

Physics themes
Polarization experiments
Moving on to Phase II
New possibilities and outlook

Starting Group for PVLAS Phase II

<u>G. Cantatore</u>, M. Karuza, V. Lozza, G. Raiteri – University and INFN Trieste

R. Cimino – INFN LNF Frascati

....

Physics themes

Basic experimental technique
 Alignetic experimental
 Alignetic experimenta

measure small (1 part in 10¹⁰ or better) changes in the polarization state of a visible light beam

Which physics problems can one attack?
QED effects at low energies
WISPs

… (write quickly the White Paper!!!)

QED

 Non linearities in the Maxwell equations predicted by the Heisenberg-Euler effective Lagrangian (1936). Photon-photon scattering in QED

- Polarization selective phase delay. "Detectable" as an ellipticity on a linearly polarized laser beam propagating in vacuum in an external magnetic field
- Photon splitting (Adler 1971)

$$\alpha = \left(\frac{\pi L}{\lambda}\right)\Delta\kappa = \left(\frac{\pi L}{\lambda}\right)\left(\kappa_{\parallel} - \kappa_{\perp}\right) = \left(\frac{L}{2}\right)\left(0.27\right)\left(\frac{\omega}{m_{e}}\right)^{5}\left(\frac{B}{B_{cr}}\right)^{6} \text{ cm}^{-1}$$

Polarization selective absorption. "Detectable" as an apparent rotation of the polarization plane (dichroism) when using a resonant cavity

ALPs, MCPs, ... (WISPs)

 ALPS from two photon effective vertex (Maiani, Petronzio and Zavattini 1986)

$$\alpha = \frac{B^2 \omega^2}{M^2 m^4} \left[\sin\left(\frac{m^2 L}{2\omega}\right) \right]^2$$

$$\psi = \frac{B^2 \omega^2}{2M^2 m^4} \left[\left(\frac{m^2 L}{2\omega}\right) - \sin\left(\frac{m^2 L}{2\omega}\right) \right]^2$$

 MCPs -> see Ahlers et al., PRD 75, 035011 (2007) for discussion and formulas

Polarization experiments

- Original idea: Iacopini and Zavattini at CERN (1979)
- Precursor experiment
 - BFRT (Brookhaven, Fermilab, Rochester, Trieste)
- O Current
 - Ø PVLAS (INFN Italy), Q&A (Taiwan)
- O Up next
 - BMV (Toulouse) -> nearly completed
 - OSQAR (CERN) -> development stage
- Proposal stage
 - PVLAS Phase II

Common features

- Photon beam probes a magnetic field region
 - Iow energy (1-2 eV)
 - Iow flux (1 W continuous at most ->3-6.10¹⁸ ph/s
- Time-varying effect
- Optical path amplification
- Main problem: noise background

Static detection

OSQAR (CERN – P. Pugnat group leader)

2 LHC dipoles with rotating $\lambda/2$ plate

P. Pugnat et al. CERN-SPSC-2006-035

LHC dipoles

simplified optical setup

BMV (Toulouse, C. Rizzo group leader)

- 1 eV photons, few mW power, pulsed magnetic fields up to 12 T (ms duration), omodyne detection, Fabry-Perot resonator
- Status: magnets tested, assembly of optics
- R. Battesti et al., Eur. Phys. T. D. 44, 222, 222 (2008)

© Q&A (Taiwan, W.T. Ni group leader)

 I eV photons, few mW power, rotationg 2.2 T permanent magnet, heterodyne detection, Fabry-Perot resonator

Status: active

arXiv:hep-ex/0611050

PVLAS

- INFN experiment at Legnaro labs (Trieste, Ferrara, LNL, LNF, Pisa)
 - Ø Polarization measurements
 - Low energy (1-2 eV photons), relatively low intensity (a few mW -> ~10¹⁷ ph/s)
 - 5 T field, long optical path (Fabry-Pérot resonator), heterodyne detection)
 - Recent papers
 - M. Begant et al., arXiv:0805.3036v1
 - E. Zavattini et al., Phys. Rev. D 77, 032006 (2008)
 - E. Zavattini et al., Phys. Rev. Lett. 96, 110406 (2006)

www.ts.infn.it/experiments/pvlas

"PVLAS anomaly"

What now?

- Controversial signal disappeared
- Focus must now shift on background noise limiting the sensitivity
- The PVLAS sensitivity in angle (ellipticity or rotation) has never gone below 5.10⁻⁷ 1/√Hz

too large!!! -> detecting the 10⁻¹¹ QED ellipticity would take
 2.5.10⁹ s (about 80 years of continuous running -> not even good for retirement!)

Prime suspect for the "noise barrier" is the granite tower holding the optics

Moving on to Phase II

Phase I mission completed ...

- Optics (structure) built around large cryostat, not the the other way around
- Tower movements transfer directly to optical components (especially mirrors)
 - impossible to control unless structure is dismantled and rebuilt from scratch
 - beam movement on optical surfaces prime suspect for birefringence noise
 - measured movement induced birefringence on mirrors = 0.4 1/m -> 5.10⁻⁷ 1/√Hz sensitivity in ellipticity means that relative movement between top and bottom optical benches must be be < 2.10⁻⁷ m/√Hz
- Very hard to control overall thermal and acoustic noise
- No basic reason for having a large optical tower

Phase I mission completed ...

- Optics (structure) built around large cryostat, not the the other way around
- Tower movements transfer directly to optical components (especially mirrors)
 - impossible to control unless structure is dismantled and rebuilt from scratch
 - beam movement on optical surfaces prime suspect for birefringence noise
 - measured movement induced birefringence on mirrors = 0.4 1/m -> 5.10⁻⁷ 1/√Hz sensitivity in ellipticity means that relative movement between top and bottom optical benches must be be < 2.10⁻⁷ m/√Hz
- Very hard to control overall thermal and acoustic noise
- No basic reason for having a large optical tower

 If you want to explore here..

If you want to want to explore here.
 You don't want this...

If you want to want to explore here.
You don't want this...

You want this!!!

Table-top setup

- Table-top ellipsometer
 - double λ Nd:YAG laser
 (1064 nm, 532 nm)
 - rotating permanentmagnet, 2.3 T, 50 cm
 - Fabry-Perot withF = 220000

Table-top setup

- Table-top ellipsometer
 - double λ Nd:YAG laser
 (1064 nm, 532 nm)
 - rotating permanentmagnet, 2.3 T, 50 cm
 - Fabry-Perot withF = 220000

Table-top setup

- Table-top ellipsometer
 - double λ Nd:YAG laser
 (1064 nm, 532 nm)
 - rotating permanentmagnet, 2.3 T, 50 cm
 - Fabry-Perot withF = 220000

- Compactify apparatus down to table-top size, mount everything on a single table
- Carefully implement from the start all "passive" means of noise reduction
 - ø vibration isolation
 - environmental shields
 - optics mounts -> solid, vacuum compatible, remotely controllable
 - ø well tested vacuum system
 - reduce number of components with new modulation scheme (protype already tested)
- O Use rotating permanent magnet

- Compactify apparatus down to table-top size, mount everything on a single table
- Carefully implement from the start all "passive" means of noise reduction
 - ø vibration isolation
 - environmental shields
 - optics mounts -> solid, vacuum compatible, remotely controllable
 - ø well tested vacuum system
 - reduce number of components with new modulation
 scheme (protype already tested)
- O Use rotating permanent magnet

- Compactify apparatus down to table-top size, mount everything on a single table
- Carefully implement from the start all "passive" means of noise reduction
 - ø vibration isolation
 - environmental shields
 - optics mounts -> solid, vacuum compatible, remotely controllable
 - ø well tested vacuum system
 - reduce number of components with new modulation scheme (protype already tested)
- O Use rotating permanent magnet

- Compactify apparatus down to table-top size, mount everything on a single table
- Carefully implement from the start all "passive" means of noise reduction
 - ø vibration isolation
 - environmental shields
 - optics mounts -> solid, vacuum compatible, remotely controllable
 - ø well tested vacuum system
 - reduce number of components with new modulation
 scheme (protype already tested)
- O Use rotating permanent magnet

- Compactify apparatus down to table-top size, mount everything on a single table
- Carefully implement from the start all "passive" means of noise reduction
 - ø vibration isolation
 - environmental shields
 - optics mounts -> solid, vacuum compatible, remotely controllable
 - ø well tested vacuum system
 - reduce number of components with new modulation scheme (protype already tested)
- O Use rotating permanent magnet

- Compactify apparatus down to table-top size, mount everything on a single table
- Carefully implement from the start all "passive" means of noise reduction
 - ø vibration isolation
 - environmental shields
 - optics mounts -> solid, vacuum compatible, remote controllable
 - ø well tested vacuum system
 - reduce number of components with new modulation
 scheme (protype already tested)
- O Use rotating permanent magnet

- Compactify apparatus down to table-top size, mount everything on a single table
- Carefully implement from the start all "passive" means of noise reduction
 - ø vibration isolation
 - environmental shields
 - optics mounts -> solid, vacuum compatible, remotely controllable
 - ø well tested vacuum system
 - reduce number of components with new modulation scheme (protype already tested)
- O Use rotating permanent magnet

- Compactify apparatus down to table-top size, mount everything on a single table
- Carefully implement from the start all "passive" means of noise reduction
 - ø vibration isolation
 - environmental shields
 - optics mounts -> solid, vacuum compatible, remotely controllable
 - well tested vacuum system
 - reduce number of components with new modulation
 scheme (protype already tested)
- O Use rotating permanent magnet

- Compactify apparatus down to table-top size, mount everything on a single table
- Carefully implement from the start all "passive" means of noise reduction
 - ø vibration isolation
 - environmental shields
 - optics mounts -> solid, vacuum compatible, remotely controllable
 - ø well tested vacuum system
 - reduce number of components with new modulation scheme (protype already tested)
- O Use rotating permanent magnet

Apparatus parameters

Parameter	IR	GREEN	
Wavelength	1064 nm	532 nm	
Laser output power	900 mW	20 mW	
ϵ_{FP}	0.25	0.25	
G	10^7 V/A	10^9 V/A	
σ^2	10^{-7}	10 ⁻⁷ 0.3 A/W 300 K	
q	0.7 A/W		
т	300 K		
RIN	$10^{-6} \ 1/\sqrt{\mathrm{Hz}}$	$10^{-6} \ 1/\sqrt{\mathrm{Hz}}$	
\hat{V}_d	$8\cdot 10^{-6} \text{ V}/\sqrt{\text{Hz}}$	$2 \cdot 10^{-6} \text{ V}/\sqrt{\text{H}}$	

IR - Advanced

GREEN - Advanced

Config.		IR		GREEN		
		Prototype	Advanced	Prototype	Advanced	Adv. power upg
	Sens. $[1/\sqrt{\text{Hz}}]$	10^{-8}	$6\cdot 10^{-10}$	10^{-8}	$6\cdot 10^{-9}$	10^{-9}
	Min. det. angle					
	in 400 std. days	$3\cdot 10^{-12}$	$1.8\cdot10^{-13}$	$3\cdot 10^{-12}$	$1.8\cdot10^{-12}$	$3\cdot 10^{-13}$
One magnet						
2.3 T, L = 0.5 m	ψ^0_{QED}	$3.1\cdot10^{-17}$	$3.1\cdot10^{-17}$	$6.1 \cdot 10^{-17}$	$6.1 \cdot 10^{-17}$	$6.1\cdot10^{-17}$
	ψ_{QED}					
	(F=220000)	$4.3\cdot10^{-12}$	$4.3\cdot10^{-12}$	$8.6\cdot10^{-12}$	$8.6\cdot10^{-12}$	$8.6\cdot 10^{-12}$
	Min. meas. time					
	(std. 8-hr. days)	188	0.675	47.1	16.9	0.471
Two magnets						
2.3 T, L = 0.5 m	ψ^0_{QED}	$6.1\cdot10^{-17}$	$6.1\cdot10^{-17}$	$1.2\cdot 10^{-16}$	$1.2\cdot 10^{-16}$	$1.2\cdot 10^{-16}$
	ψ_{QED}					
	(F=220000)	$8.6\cdot10^{-12}$	$8.6\cdot10^{-12}$	$1.7\cdot 10^{-11}$	$1.7\cdot 10^{-11}$	$1.7\cdot 10^{-11}$
	Min. meas. time					
	(std. 8-hr. days)	47.1	0.169	11.7	4.2	0.12

Table IV: Minimum measurement times necessary to detect QED photon-photon scattering for several apparatus configurations.

Config.		IR		GREEN		
		Prototype	Advanced	Prototype	Advanced	Adv. power upg
	Sens. $[1/\sqrt{\text{Hz}}]$	10^{-8}	$6\cdot 10^{-10}$	10^{-8}	$6\cdot 10^{-9}$	10^{-9}
	Min. det. angle					
	in 400 std. days	$3\cdot 10^{-12}$	$1.8\cdot10^{-13}$	$3\cdot 10^{-12}$	$1.8\cdot10^{-12}$	$3\cdot 10^{-13}$
One magnet						
2.3 T, L = 0.5 m	ψ^0_{QED}	$3.1\cdot10^{-17}$	$3.1\cdot10^{-17}$	$6.1\cdot10^{-17}$	$6.1 \cdot 10^{-17}$	$6.1 \cdot 10^{-17}$
	ψ_{QED}					
	(F=220000)	$4.3\cdot 10^{-12}$	$4.3\cdot10^{-12}$	$8.6\cdot10^{-12}$	$8.6\cdot10^{-12}$	$8.6\cdot 10^{-12}$
	Min. meas. time					
	(std. 8-hr. days)	188	0.675	47.1	16.9	0.471
Two magnets						
2.3 T, L = 0.5 m	ψ^0_{QED}	$6.1\cdot10^{-17}$	$6.1\cdot10^{-17}$	$1.2\cdot 10^{-16}$	$1.2\cdot 10^{-16}$	$1.2\cdot 10^{-16}$
	ψ_{QED}					
	(F=220000)	$8.6\cdot10^{-12}$	$8.6\cdot10^{-12}$	$1.7\cdot10^{-11}$	$1.7\cdot 10^{-11}$	$1.7\cdot10^{-11}$
	Min. meas. time					
	(std. 8-hr. days)	47.1	0.169	11.7	4.2	0.12

Table IV: Minimum measurement times necessary to detect QED photon-photon scattering for several apparatus configurations.

Config.		IR		GREEN		
		Prototype	Advanced	Prototype	Advanced	Adv. power upg
	Sens. $[1/\sqrt{\text{Hz}}]$	10^{-8}	$6\cdot 10^{-10}$	10^{-8}	$6\cdot 10^{-9}$	10^{-9}
	Min. det. angle					
	in 400 std. days	$3\cdot 10^{-12}$	$1.8\cdot10^{-13}$	$3\cdot 10^{-12}$	$1.8\cdot10^{-12}$	$3\cdot 10^{-13}$
One magnet						
2.3 T, L = 0.5 m	ψ^0_{QED}	$3.1\cdot10^{-17}$	$3.1\cdot10^{-17}$	$6.1 \cdot 10^{-17}$	$6.1\cdot10^{-17}$	$6.1\cdot10^{-17}$
	ψ_{QED}					
	(F=220000)	$4.3\cdot10^{-12}$	$4.3\cdot10^{-12}$	$8.6\cdot10^{-12}$	$8.6\cdot10^{-12}$	$8.6\cdot 10^{-12}$
	Min. meas. time					
	(std. 8-hr. days)	188	0.675	47.1	16.9	0.471
Two magnets		\smile				
2.3 T, $L = 0.5$ m	ψ^0_{QED}	$6.1\cdot10^{-17}$	$6.1\cdot10^{-17}$	$1.2\cdot 10^{-16}$	$1.2\cdot 10^{-16}$	$1.2\cdot 10^{-16}$
	ψ_{QED}					
	(F=220000)	$8.6\cdot10^{-12}$	$8.6\cdot10^{-12}$	$1.7\cdot10^{-11}$	$1.7\cdot 10^{-11}$	$1.7\cdot10^{-11}$
	Min. meas. time					
	(std. 8-hr. days)	47.1	0.169	11.7	4.2	0.12

Table IV: Minimum measurement times necessary to detect QED photon-photon scattering for several apparatus configurations.

Config.		IR		GREEN		
		Prototype	Advanced	Prototype	Advanced	Adv. power upg
	Sens. $[1/\sqrt{\text{Hz}}]$	10^{-8}	$6\cdot 10^{-10}$	10^{-8}	$6\cdot 10^{-9}$	10^{-9}
	Min. det. angle					
	in 400 std. days	$3\cdot 10^{-12}$	$1.8\cdot10^{-13}$	$3\cdot 10^{-12}$	$1.8 \cdot 10^{-12}$	$3\cdot 10^{-13}$
One magnet						
2.3 T, L = 0.5 m	ψ^0_{QED}	$3.1\cdot10^{-17}$	$3.1 \cdot 10^{-17}$	$6.1 \cdot 10^{-17}$	$6.1 \cdot 10^{-17}$	$6.1\cdot10^{-17}$
	ψ_{QED}					
	(F=220000)	$4.3\cdot10^{-12}$	$4.3 \cdot 10^{-12}$	$8.6\cdot10^{-12}$	$8.6\cdot 10^{-12}$	$8.6\cdot10^{-12}$
	Min. meas. time					
	(std. 8-hr. days)	188	0.675	47.1	16.9	0.471
Two magnets		\smile				
2.3 T, L = 0.5 m	ψ^0_{QED}	$6.1\cdot10^{-17}$	$6.1 \cdot 10^{-17}$	$1.2\cdot10^{-16}$	$1.2\cdot 10^{-16}$	$1.2\cdot 10^{-16}$
	ψ_{QED}					
	(F=220000)	$8.6\cdot10^{-12}$	$8.6\cdot10^{-12}$	$1.7\cdot 10^{-11}$	$1.7\cdot 10^{-11}$	$1.7\cdot10^{-11}$
	Min. meas. time					
	(std. 8-hr. days)	47.1	0.169	11.7	4.2	0.12

several apparatus configurations.

Measurement times for QED IR – Advanced and Prototype

GREEN – Advanced and Prototype

ALP parameter space coverage

New possibilities

 Resonant regeneneration
 Polarization experiments with "high energy" photon sources

Resonant regeneration

Following an idea by Sikivie, Tanner and Van Bibber, PRL 98, 172002 (2007)

- Solution Can be implemented with a frequency doubled laNd:YAG laser and two locked identical Fabry-Perot cavities made with double λ mirrors
- Gain of a factor of F² in overall rate of regenerated photons

Idealized photon-photon scattering experiment with "high energy" photon source

Relevant quantities

- Use Mueller matrix formalism to represent action of optical elements (including the magnetic field) on Stokes vectors representing the polarized photon beam
- Δ is some birefringence induced by interaction in the magnetic field region (QED, ALPs, MCPs...)
- In the QED case

$$\Delta = \frac{\pi}{\lambda} L \Delta n \approx \left(2 \cdot 10^{-17}\right) \left(\frac{E_{\gamma}}{\text{eV}}\right) \left(\frac{L}{\text{m}}\right) \left(\frac{B^2}{\text{T}^2}\right).$$

signal =
$$R_{on} - R_{off} = N_{\gamma} \frac{(1 - \epsilon^2)}{2} sin2\Delta$$
 noise = $\sqrt{N_{\gamma} \frac{(1 + \epsilon^2)}{2}}$

$$SNR = \sqrt{2}\Delta \frac{\left(1 - \epsilon^2\right)}{\sqrt{1 + \epsilon^2}} \sqrt{N_\gamma} \sqrt{T}$$

Assuming $\Delta <<1$ and polarizer with unit transmittivity

Detection Times at FEL's

Source	Energy [eV]	Flux [ph/s]	Δ (10 T, 10 m)	T(SNR=1) [s]	T[8 hr d.]
FLAME (LNF)	1.55	2.00E+20	3.1E-14	2.60E+06	90.33
FLASH (DESY)	90	5.60E+15	1.8E-12	2.76E+07	956.85
SPARX (LNF)	400	1.20E+14	8E-12	6.51E+07	2,260.56
XFEL (DESY)	3000	6.00E+17	6E-11	2.31E+02	0.01

Pro's and con's

Pro's

a larger effect

single-photon detection -> low noise

ø possible test at different energies

© Con's

need circularly polarized photons
 need a good polarizer for high energy photons

Conclusions

- The PVLAS signal is gone: challenge is now noise
- The PVLAS apparatus in Legnaro is limited by size, cost and duty cycle
- We plan a scaling down of the ellipsometer down to table top dimensions
 - Fabry-Perot finesse ~200000
 - ø better overall control
 - one to reach at least 10⁻⁸ 1/√Hz
 - se permanent magnets -> high duty cycle, no fringe fields
- QED (and other effects...) detectable in a reasonable time on table top if goal sensitivity is reached
- Future plans -> move up in energy to FEL-like photon source
- Not-so-future plans -> resonant regeneration!