

Free-electron lasers at DESY: Status, challenges, and opportunities

The Free electron LASer in Hamburg: First FEL user facility for VUV/soft X-ray radiation in the world

Tim Laarmann, DESY

www.xfel.eu

4th Patras Workshop on Axions, WIMPs and WISPs, 18-21 June 2008

Progress photon source development ...

10.000 x more "light" per decade since 1965

Brilliance

Obvious questions

• What is an FEL at all ?

• Can you actually do something new with this radiation source ???

Synchrotron Radiation Sources

Photons at the experiment

Bending magnet

\propto N_w x Bending magnet

$\propto {N_U}^2 x$ Bending magnet

 $\propto {N_{U}}^2 \times N_e \times Bending magnet$

HELMHOLTZ

Current performance of FLASH

peak brilliance

User facility FLASH at DESY

Research Areas

- Interaction of ultra-intense XUV pulses with matter
 - multiphoton excitation of atoms, molecules, clusters...
 - creation and characterization of dense plasmas
- Single-shot Diffraction imaging of (biological) samples
- Two-color time-resolved experiments
 - synchronization FEL optical laser
 - pump-probe experiments on atoms, molecules and solids

Research Areas

- Investigation of extremely dilute samples
 - photodissociation of molecular ions
 - highly charged ions
 - mass selected clusters
- Investigation of surfaces and solids
 - surface chemistry and dynamic

Multiphoton multiple ionization of xenon in the EUV

Wavelength:	13.3 nm
Photon energy:	93 eV
Pulse energy:	1 to 10 µJ
Pulse duration:	10 fs
Focus size:	3 µm (FWHM)
Peak irradiance:	$8 \times 10^{15} \text{ W cm}^{-2}$
Highest charge state observed:	Xe ²¹⁺
Energy absorbed per atom and pulse:	> 5 keV
Number of photons absorbed per atom and pulse:	> 57
Number of ionization steps:	≈ 1 9

A. A. Sorokin, et al., PRL 99, 213002 (2007)

Research Areas

- Interaction of ultra-intense XUV pulses with matter
 - multiphoton excitation of atoms, molecules, clusters...
 - creation and characterization of dense plasmas
- Single-shot Diffraction imaging
- Femtosecond time-resolved experiments
 - synchronization FEL optical laser
 - pump-probe experiments on atoms, molecules and solids

First demonstration of coherent diffraction imaging with a soft-X-ray FEL (J. Hajdu, H. Chapman et al.)

Image reconstruction

H. N. Chapman et al., Nature Physics 2, 839 (2006)

Single-shot imaging by soft-X-ray scattering of single and few nm-gasphase particles (T. Möller et al.)

single shot 2D- scattering patterns of a single twin-cluster (35 nm radius Xenon cluster, 'double slit' experiment)

simulation

Intensity

clusters stay intact during exposure (30 fs)

ELMHOLTZ

Research Areas

- Interaction of ultra-intense XUV pulses with matter
 - multiphoton excitation of atoms, molecules, clusters...
 - creation and characterization of dense plasmas
- Single-shot Diffraction imaging of (biological) samples
- Femtosecond time-resolved experiments
 - synchronization FEL optical laser
 - pump-probe experiments on atoms

2-color photoionization experimental set-up (M. Meyer et al.)

SB

18

20

16

Two-color ionization in a strong optical field

Sideband intensity very sensitive to temporal overlap

E. S. Toma et al., PRA 62, 061801 (2000)

Xe-Sideband scan

optical Laser: 800 nm, $\sim 1 \ 10^{14} \text{ Wcm}^{-2}$ FEL: 13.7 nm

76 78 80 82 84 86 88 90 92 74

Photoelectron energy in eV

M. Meyer et al. PRA 75, 011401 (2006) Radcliffe et al. APL (2007) Radcliffe et al. NIM A (2007)

funded by BMBF 2007-2010

ASSOCIATIO

Objectives

- Seed FEL process with ~20 fs HHG pulses at 13 30 nm in a new ~10 m long variable gap undulator
- Demonstrate improved stability of pulse energy
- Set up pilot pump-probe experiment with ~20 fs synchronization
- Do not disturb SASE operation

HHG Seeding of FLASH = sFLASH

Tim Laarmann

HHG Seeding of FLASH = sFLASH

HELMHOLTZ

ASSOCIATION

Time profile and spectrum of HHG pulse used for numerical simulation of seeding process (GENESIS)

GENSIS result on seeded FEL pulse after 6 m undulator

HELMHOLTZ

Schenefeld

DES

Experimental hall

Computer simulation

Imaging of a single bio-molecule

with atomic resolution

Oversampling: J. Miao, K.O. Hodgson and D. Sayre, PNAS <u>98</u> (2001) 6641-6645

Diffraction: From static to dynamics

Structure of large bio-molecules

nucleosome core particle

how do they function at work?

core particle of the blue-tongue virus

Photon science with FELs at DESY: Present and future

	European XFEL facility			FLASH		
Parameter\Undulator source	Unit	SASE 1	SASE 3	SASE 3	U 1	U 1
Wavelength	nm	0.1	1.6	4.9	6	13
Photons per pulse	#	1012	1.0×10 ¹⁴	3.7×10 ¹⁴	3.0×10 ¹²	3.3×10 ¹²
Pulse energy	mJ	2	13	15	0.1	0.05
Power density (1 micron spot)	W/cm ²	2.5×10 ¹⁸	1.6×10 ¹⁹	1.9×10 ¹⁹	3.2×10 ¹⁷	1.6×10 ¹⁷
Ponderomotive energy U _p	eV	0.002	3.8	41	1.0	2.4
Keldysh parameter γ (I _p =13.6 eV)		55	1.3	0.4	2.6	1.7

FELs around the world

Location	FEL Name	Wavelength range	Institution, City
America			
USA	DFELL	IR & UV	Duke University, Durham NC
	DUV-FEL & ATF	VUV	NSLS, Brookhaven NY
	Free-Electron Laser Center	IR	Vanderbilt University, Nashville TE
	FEL User Facility	IR	JLab, Newport News VA
	<u>LEUTL</u>	VIS to VUV	ANL, Argonne IL
	LCLS •	X-rays	SLAC, Stanford CA
	<u>Mark III</u>	IR	University of Hawaii, Manoa
	MIT-Bates X-ray Laser •	X-rays	MIT-Bates Linear Acc. Center, Middleton MA
	Picosecond FEL	FIR to IR	Stanford CA
	UCSB FEL	MM & FIR	UCSB, Santa Barbara CA
	<u>Neptune, Pegasus, VISA</u>	IR to VIS	UCLA, Westwood CA
Asia and Mi	ddle East		
China	<u>BFEL</u>	IR	IHEPA, Bejing
India	<u>FIR-FEL</u> •	FIR	CAT, Indore
	IPR-FEL	MM	Inst. for Plasma Research, Bhat (Gandhinagar)
Israel	<u>Israeli FEL</u>	MM to FIR	University Tel Aviv
Japan	FEL-SUT	IR	Science University of Tokyo
	<u>iFEL</u>	FIR to UV	University Osaka
	ISIR-FEL	FIR	University Osaka
	JAERI FEL Project	IR	
	LEBRA FEL	IR	Nihon University
	<u>NIJI-IV</u>	VIS to UV	ETL (now AIST), Tsukuba
	<u>SCSS</u> •	VUV to soft X-rays	SPring-8, Nishi Harima
	UVSOR-FEL	UV	UVSOR, Okazaki

rance	<u>CLIO</u>	IR	LURE, Orsay	
	SUPER-ACO FEL	UV	LURE, Orsay	
Germany	BESSY-FEL •	VUV to X-rays	BESSY, Berlin	
	ELBE-FEL	FIR to IR	FZ Rossendorf	
	FELICITA I	VIS to UV	DELTA, Dortmund	
	IR-FEL	IR	TU Darmstadt	
	VUV-FEL	VUV to soft X-rays	– DESY, Hamburg	
	XFEL •	X-rays		
Great Britain	<u>4GLS</u> •	IR, VUV, soft X-rays	Daresbury Laboratory	
Italy	ENEA	MM	Frascati	
	EUFELE	UV to VUV	ELETTRA, Trieste	
	FERMI •	VUV to soft X-rays		
	SPARC / SPARX	VIS to UV / X-rays	CNR, ENEA, INFN, Tor Vergata Univ., INFM-ST, Italy	
Russia	PPL mm-FEL	MM	JINR, Dubna	
Sweden	IR-FEL & VUV-FEL •	IR & VUV	MAX-lab, Lund	
The Netherlands	FELIX	FIR to IR	- FOM, Rijnhuizen	
	Fusion FEM	MM		
	TEU-FEL,	MM & FIR to IR	University Twente	

under development / proposed project

http://www-hasylab.desy.de/facility/fel/overview/fel_laboratories.htm

EU Roundtable SR+FEL

Free-electron lasers at DESY:

- FLASH: first and world wide unique soft x-ray FEL

- European X-FEL: unprecented experimental oportunities - one of 3 XFEL projects world wide